MultiEnvironmentTrial.Rmd
This tutorial introduces use to the main functions of the
MegaLMM
R package.
We will use MegaLMM
to do Genomic Prediction for a set
of maize lines in a large multi-environmental trial. Multi-environment
trials are used to evaluate candidate varieties under different
environments to learn which varieties might be useful for particular
locations. This is important because Gene-Environment
Interactions are very common in plants, which means that the
relative performances of varieties may change across different
environments, so the same line won’t necessarily be best everywhere.
Gene-environment interactions are often thought of as reaction norms, where we plot the change in a line’s performance as a function of the environment. However, an equivalent model for gene-environment interactions is to think of the trait value in each environment as a separate trait, and model the correlation in trait values across environments. As reaction norms, gene-environment interactions are represented by lines with different slopes. As correlated traits, gene-environment interactions are represented by correlations in traits that are less than one.
In MegaLMM
we model gene-environment interactions as
correlated traits, because this takes advantage of
MegaLMM
’s ability to model the covariances among a large
number of traits. We will use MegaLMM
to estimate the
additive genetic and non-additive genetic covariances among all trials,
and then use these covariances to predict the genetic values of every
line in every trial. This is particularly useful when
multi-environmental trials are incomplete meaning that not
every line is evaluated in every trial. Specifically, we will leverage
the relative line performances in some trials and the covariances among
trials to predict the line performances in trials where they were not
observed. We will use cross-validation to evaluate the
accuracy of these predictions, and compare them to predictions in each
trial that we would have made treating each trial independently.
The data are based on data from the Genomes To Fields Initiative which is a large consortium growing maize hybrids across a large number of trials across North America, but have been anonymized and subsetted to a smaller set for demonstration.
We will use the MegaLMM
, rrBLUP
, and
ggplot2
packages.
rrBLUP
and ggplot2
can be installed from
CRAN if you do not have them already:
if(!require(rrBLUP)) { install.packages("rrBLUP"); library(rrBLUP) }
#> Loading required package: rrBLUP
#> Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
#> logical.return = TRUE, : there is no package called 'rrBLUP'
#> Installing package into '/home/runner/work/_temp/Library'
#> (as 'lib' is unspecified)
if(!require(ggplot2)) { install.packages("ggplot2"); library(ggplot2) }
#> Loading required package: ggplot2
MegaLMM
is installed from GitHub:
if(!require(devtools)) { install.packages("devtools"); library(devtools) }
#> Loading required package: devtools
#> Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
#> logical.return = TRUE, : there is no package called 'devtools'
#> Installing package into '/home/runner/work/_temp/Library'
#> (as 'lib' is unspecified)
#> also installing the dependencies 'credentials', 'zip', 'gitcreds', 'ini', 'httpuv', 'xtable', 'fontawesome', 'sourcetools', 'later', 'promises', 'clipr', 'gert', 'gh', 'rstudioapi', 'shiny', 'htmlwidgets', 'xopen', 'brew', 'commonmark', 'usethis', 'miniUI', 'pkgbuild', 'profvis', 'rcmdcheck', 'remotes', 'roxygen2', 'rversions', 'urlchecker'
#> Loading required package: usethis
if(!require(MegaLMM)) {
devtools::install_github('deruncie/MegaLMM')
library(MegaLMM)
}
#> Loading required package: MegaLMM
The data files for this tutorial are included with the
MegaLMM
package and can be accessed with the
data()
function:
Yield data are in the file Yield_trial_BLUPs
and include
3,318 yield measurements from 502 lines and 19 environments.
data('yield_data',package='MegaLMM')
yield_data
#> Line Population Env Yield
#> 1 Line001 1 Env01 7.663660e-02
#> 2 Line001 1 Env02 5.736228e-01
#> 3 Line001 1 Env03 -1.057396e-01
#> 4 Line001 1 Env04 4.053487e-01
#> 5 Line001 1 Env05 -9.638836e-02
#> 6 Line001 1 Env12 7.502145e-02
#> 7 Line002 1 Env01 -3.429877e-02
#> 8 Line002 1 Env02 -4.004347e-02
#> 9 Line002 1 Env03 -2.653557e-01
#> 10 Line002 1 Env04 1.136820e-01
#> 11 Line002 1 Env05 -3.726350e-03
#> 12 Line002 1 Env12 -3.714474e-01
#> 13 Line003 1 Env01 2.105977e-01
#> 14 Line003 1 Env02 -6.395920e-01
#> 15 Line003 1 Env03 3.995948e-01
#> 16 Line003 1 Env04 2.926501e-01
#> 17 Line003 1 Env05 1.146499e-01
#> 18 Line003 1 Env12 -2.370533e-01
#> 19 Line004 1 Env01 -7.522661e-01
#> 20 Line004 1 Env02 -1.431944e-01
#> 21 Line004 1 Env03 -1.200977e+00
#> 22 Line004 1 Env04 -4.363149e-01
#> 23 Line004 1 Env05 -2.494169e-01
#> 24 Line004 1 Env12 -7.852241e-01
#> 25 Line005 1 Env01 5.040685e-01
#> 26 Line005 1 Env02 1.487476e-01
#> 27 Line005 1 Env03 6.330452e-01
#> 28 Line005 1 Env04 6.561490e-01
#> 29 Line005 1 Env05 1.237169e-01
#> 30 Line005 1 Env12 -2.390269e-01
#> 31 Line006 1 Env01 -2.619325e-02
#> 32 Line006 1 Env02 1.682000e-01
#> 33 Line006 1 Env03 1.799732e-01
#> 34 Line006 1 Env04 -2.938856e-01
#> 35 Line006 1 Env05 2.111995e-02
#> 36 Line006 1 Env12 2.513783e-01
#> 37 Line007 1 Env01 6.059105e-01
#> 38 Line007 1 Env02 8.658490e-02
#> 39 Line007 1 Env03 3.821189e-01
#> 40 Line007 1 Env04 4.749081e-01
#> 41 Line007 1 Env05 1.062514e-01
#> 42 Line007 1 Env12 -2.105132e-01
#> 43 Line008 1 Env01 7.674815e-02
#> 44 Line008 1 Env02 -1.872101e-01
#> 45 Line008 1 Env03 -3.152836e-01
#> 46 Line008 1 Env04 -4.100128e-01
#> 47 Line008 1 Env05 9.233675e-02
#> 48 Line008 1 Env12 -2.581535e-01
#> 49 Line009 1 Env01 1.487860e-01
#> 50 Line009 1 Env02 -5.105435e-01
#> 51 Line009 1 Env03 3.582082e-01
#> 52 Line009 1 Env04 -7.643776e-02
#> 53 Line009 1 Env05 1.296953e-01
#> 54 Line009 1 Env12 1.624819e-01
#> 55 Line010 1 Env01 2.427229e-01
#> 56 Line010 1 Env02 6.540042e-02
#> 57 Line010 1 Env03 6.162406e-01
#> 58 Line010 1 Env04 -2.463628e-01
#> 59 Line010 1 Env05 9.485659e-02
#> 60 Line010 1 Env12 -7.857771e-01
#> 61 Line011 1 Env01 -5.387960e-02
#> 62 Line011 1 Env02 -1.654603e-01
#> 63 Line011 1 Env03 -5.442302e-01
#> 64 Line011 1 Env04 -2.303881e-01
#> 65 Line011 1 Env05 -2.921937e-02
#> 66 Line011 1 Env12 1.048671e-01
#> 67 Line012 1 Env01 -2.315558e-01
#> 68 Line012 1 Env02 3.777948e-02
#> 69 Line012 1 Env03 -2.529660e-02
#> 70 Line012 1 Env04 -5.408300e-01
#> 71 Line012 1 Env05 3.335723e-02
#> 72 Line012 1 Env12 -2.931048e-01
#> 73 Line013 1 Env01 -6.446561e-01
#> 74 Line013 1 Env02 -6.717251e-01
#> 75 Line013 1 Env03 -4.344309e-01
#> 76 Line013 1 Env04 2.185775e-01
#> 77 Line013 1 Env05 -1.013940e-01
#> 78 Line013 1 Env12 -6.828011e-01
#> 79 Line014 1 Env01 -3.126808e-01
#> 80 Line014 1 Env02 1.714737e-02
#> 81 Line014 1 Env03 -1.775868e-02
#> 82 Line014 1 Env04 1.652616e-01
#> 83 Line014 1 Env05 2.601497e-02
#> 84 Line014 1 Env12 -1.526309e-01
#> 85 Line015 1 Env01 4.100197e-01
#> 86 Line015 1 Env02 -2.147732e-01
#> 87 Line015 1 Env03 1.789289e-01
#> 88 Line015 1 Env04 -3.884937e-02
#> 89 Line015 1 Env05 7.092664e-02
#> 90 Line015 1 Env12 2.762909e-01
#> 91 Line016 1 Env01 -5.932312e-02
#> 92 Line016 1 Env02 5.224478e-01
#> 93 Line016 1 Env03 2.155236e-01
#> 94 Line016 1 Env04 4.689738e-01
#> 95 Line016 1 Env05 6.285470e-02
#> 96 Line016 1 Env12 2.774458e-01
#> 97 Line017 1 Env01 -2.878808e-01
#> 98 Line017 1 Env02 -7.946321e-01
#> 99 Line017 1 Env03 -2.054899e-01
#> 100 Line017 1 Env04 1.537212e-01
#> 101 Line017 1 Env05 -2.266715e-02
#> 102 Line017 1 Env12 6.754159e-01
#> 103 Line018 1 Env01 -3.223057e-02
#> 104 Line018 1 Env02 8.191515e-02
#> 105 Line018 1 Env03 -9.293057e-01
#> 106 Line018 1 Env04 -5.352318e-02
#> 107 Line018 1 Env05 -1.890778e-01
#> 108 Line018 1 Env12 2.315757e-01
#> 109 Line019 1 Env01 1.208312e-01
#> 110 Line019 1 Env02 -5.974399e-01
#> 111 Line019 1 Env03 -6.146869e-01
#> 112 Line019 1 Env04 -1.371508e-01
#> 113 Line019 1 Env05 -9.664683e-02
#> 114 Line019 1 Env12 5.763020e-01
#> 115 Line020 1 Env01 -6.742635e-01
#> 116 Line020 1 Env02 3.595038e-01
#> 117 Line020 1 Env03 2.996193e-01
#> 118 Line020 1 Env04 -4.208846e-02
#> 119 Line020 1 Env05 -4.244346e-02
#> 120 Line020 1 Env12 2.418972e-01
#> 121 Line021 1 Env01 9.942649e-02
#> 122 Line021 1 Env02 2.386349e-01
#> 123 Line021 1 Env03 -1.664182e-01
#> 124 Line021 1 Env04 8.595582e-02
#> 125 Line021 1 Env05 -1.387228e-01
#> 126 Line021 1 Env12 5.283409e-01
#> 127 Line022 1 Env01 2.403872e-01
#> 128 Line022 1 Env02 -2.705558e-01
#> 129 Line022 1 Env03 2.787914e-01
#> 130 Line022 1 Env04 -2.859170e-01
#> 131 Line022 1 Env05 1.834085e-02
#> 132 Line022 1 Env12 -7.379959e-01
#> 133 Line023 1 Env01 -3.542020e-02
#> 134 Line023 1 Env02 -4.687080e-01
#> 135 Line023 1 Env03 2.074113e-01
#> 136 Line023 1 Env04 -4.540796e-01
#> 137 Line023 1 Env05 3.697371e-02
#> 138 Line023 1 Env12 -6.936249e-02
#> 139 Line024 1 Env01 -9.153470e-02
#> 140 Line024 1 Env02 1.475635e-01
#> 141 Line024 1 Env03 3.102428e-01
#> 142 Line024 1 Env04 -1.042002e-01
#> 143 Line024 1 Env05 7.933363e-02
#> 144 Line024 1 Env12 -1.555026e-02
#> 145 Line025 1 Env01 4.431633e-01
#> 146 Line025 1 Env02 9.331619e-01
#> 147 Line025 1 Env03 7.725887e-01
#> 148 Line025 1 Env04 2.904366e-01
#> 149 Line025 1 Env05 -1.341809e-01
#> 150 Line025 1 Env12 -8.723935e-02
#> 151 Line026 1 Env01 2.471259e-01
#> 152 Line026 1 Env02 1.619154e-01
#> 153 Line026 1 Env03 8.276160e-01
#> 154 Line026 1 Env04 -7.328924e-02
#> 155 Line026 1 Env05 1.090861e-01
#> 156 Line026 1 Env12 4.949538e-01
#> 157 Line027 1 Env01 -1.251651e-02
#> 158 Line027 1 Env02 1.688593e-01
#> 159 Line027 1 Env03 -8.178109e-01
#> 160 Line027 1 Env04 -4.061314e-02
#> 161 Line027 1 Env05 -3.665523e-02
#> 162 Line027 1 Env12 -8.397086e-02
#> 163 Line028 1 Env01 9.571128e-02
#> 164 Line028 1 Env02 -4.433641e-01
#> 165 Line028 1 Env03 -3.501224e-02
#> 166 Line028 1 Env04 7.969534e-02
#> 167 Line028 1 Env05 6.996588e-02
#> 168 Line028 1 Env12 -1.205333e-01
#> 169 Line029 1 Env01 -8.560861e-02
#> 170 Line029 1 Env02 -2.906025e-01
#> 171 Line029 1 Env03 3.588538e-01
#> 172 Line029 1 Env04 -6.047660e-01
#> 173 Line029 1 Env05 1.793650e-01
#> 174 Line029 1 Env12 2.988244e-02
#> 175 Line030 1 Env01 -2.450239e-01
#> 176 Line030 1 Env02 -3.768555e-01
#> 177 Line030 1 Env03 -3.359933e-01
#> 178 Line030 1 Env04 1.122401e-01
#> 179 Line030 1 Env05 -6.430218e-02
#> 180 Line030 1 Env12 3.176897e-01
#> 181 Line031 1 Env01 4.327484e-01
#> 182 Line031 1 Env02 3.169358e-01
#> 183 Line031 1 Env03 -3.953674e-01
#> 184 Line031 1 Env04 7.013470e-02
#> 185 Line031 1 Env05 -2.842641e-01
#> 186 Line031 1 Env12 3.005638e-01
#> 187 Line032 1 Env01 2.022828e-02
#> 188 Line032 1 Env02 6.938523e-01
#> 189 Line032 1 Env03 1.962519e-01
#> 190 Line032 1 Env04 6.652834e-01
#> 191 Line032 1 Env05 2.513995e-01
#> 192 Line032 1 Env12 4.023299e-01
#> 193 Line033 1 Env01 -3.672013e-02
#> 194 Line033 1 Env02 2.193808e-01
#> 195 Line033 1 Env03 4.384160e-01
#> 196 Line033 1 Env04 1.855260e-01
#> 197 Line033 1 Env05 -3.754366e-02
#> 198 Line033 1 Env12 4.405533e-01
#> 199 Line034 1 Env01 -2.630628e-01
#> 200 Line034 1 Env02 1.068427e-01
#> 201 Line034 1 Env03 2.448363e-01
#> 202 Line034 1 Env04 2.300229e-01
#> 203 Line034 1 Env05 -1.819871e-01
#> 204 Line034 1 Env12 3.934037e-01
#> 205 Line035 1 Env01 4.568233e-01
#> 206 Line035 1 Env02 9.331069e-01
#> 207 Line035 1 Env03 7.616089e-01
#> 208 Line035 1 Env04 9.123068e-01
#> 209 Line035 1 Env05 2.698053e-01
#> 210 Line035 1 Env12 -2.611717e-01
#> 211 Line036 1 Env01 -3.122496e-02
#> 212 Line036 1 Env02 -1.471982e-02
#> 213 Line036 1 Env03 -6.590165e-01
#> 214 Line036 1 Env04 1.323698e-01
#> 215 Line036 1 Env05 1.406086e-01
#> 216 Line036 1 Env12 -5.751703e-01
#> 217 Line037 1 Env01 1.992879e-01
#> 218 Line037 1 Env02 -6.110940e-02
#> 219 Line037 1 Env03 3.360152e-02
#> 220 Line037 1 Env04 5.278882e-02
#> 221 Line037 1 Env05 -2.321549e-01
#> 222 Line037 1 Env12 -3.036594e-01
#> 223 Line038 1 Env01 2.596149e-03
#> 224 Line038 1 Env02 -3.585840e-01
#> 225 Line038 1 Env03 -6.083689e-01
#> 226 Line038 1 Env04 -4.153578e-01
#> 227 Line038 1 Env05 9.797793e-02
#> 228 Line038 1 Env12 -6.350388e-01
#> 229 Line039 1 Env01 -5.147031e-02
#> 230 Line039 1 Env02 1.711045e-01
#> 231 Line039 1 Env03 -2.609646e-01
#> 232 Line039 1 Env04 5.303502e-01
#> 233 Line039 1 Env05 1.869182e-01
#> 234 Line039 1 Env12 2.622916e-01
#> 235 Line040 1 Env01 4.230289e-01
#> 236 Line040 1 Env02 -9.530414e-02
#> 237 Line040 1 Env03 1.089190e+00
#> 238 Line040 1 Env04 3.964316e-01
#> 239 Line040 1 Env05 1.417472e-01
#> 240 Line040 1 Env12 8.100431e-01
#> 241 Line041 1 Env01 -1.191161e-02
#> 242 Line041 1 Env02 -6.758489e-02
#> 243 Line041 1 Env03 4.133780e-01
#> 244 Line041 1 Env04 -2.104227e-01
#> 245 Line041 1 Env05 3.342105e-02
#> 246 Line041 1 Env12 -4.969144e-01
#> 247 Line042 1 Env01 -5.194868e-01
#> 248 Line042 1 Env02 -5.224029e-01
#> 249 Line042 1 Env03 -1.198224e+00
#> 250 Line042 1 Env04 -5.853565e-01
#> 251 Line042 1 Env05 -3.110742e-01
#> 252 Line042 1 Env12 1.521808e-01
#> 253 Line043 1 Env01 8.223788e-01
#> 254 Line043 1 Env02 4.890592e-02
#> 255 Line043 1 Env03 1.063901e+00
#> 256 Line043 1 Env04 2.600288e-01
#> 257 Line043 1 Env05 1.920498e-01
#> 258 Line043 1 Env12 1.923032e-01
#> 259 Line044 1 Env01 -3.940269e-02
#> 260 Line044 1 Env02 3.604565e-01
#> 261 Line044 1 Env03 2.237813e-01
#> 262 Line044 1 Env04 4.369172e-01
#> 263 Line044 1 Env05 -1.426801e-01
#> 264 Line044 1 Env12 2.598595e-02
#> 265 Line045 1 Env01 -4.065801e-01
#> 266 Line045 1 Env02 1.870945e-01
#> 267 Line045 1 Env03 -6.283372e-02
#> 268 Line045 1 Env04 -9.191246e-02
#> 269 Line045 1 Env05 -6.948758e-02
#> 270 Line045 1 Env12 1.529945e-01
#> 271 Line046 1 Env01 -9.779920e-02
#> 272 Line046 1 Env02 7.071879e-03
#> 273 Line046 1 Env03 -1.360393e-01
#> 274 Line046 1 Env04 6.041856e-02
#> 275 Line046 1 Env05 -1.590995e-01
#> 276 Line046 1 Env12 3.241246e-01
#> 277 Line047 1 Env01 1.130650e-02
#> 278 Line047 1 Env02 3.298617e-01
#> 279 Line047 1 Env03 -8.371703e-01
#> 280 Line047 1 Env04 3.593239e-01
#> 281 Line047 1 Env05 -1.160482e-01
#> 282 Line047 1 Env12 3.455347e-01
#> 283 Line048 1 Env01 -8.341143e-02
#> 284 Line048 1 Env02 1.522246e-01
#> 285 Line048 1 Env03 4.302926e-01
#> 286 Line048 1 Env04 -6.841019e-01
#> 287 Line048 1 Env05 6.639779e-02
#> 288 Line048 1 Env12 4.091434e-01
#> 289 Line049 1 Env01 -1.690703e-01
#> 290 Line049 1 Env02 -6.894051e-01
#> 291 Line049 1 Env03 -6.326231e-01
#> 292 Line049 1 Env04 -5.262413e-01
#> 293 Line049 1 Env05 8.013351e-02
#> 294 Line049 1 Env12 -3.289724e-01
#> 295 Line050 1 Env01 -9.826602e-02
#> 296 Line050 1 Env02 -1.025849e-01
#> 297 Line050 1 Env03 -1.658634e-01
#> 298 Line050 1 Env04 3.945151e-01
#> 299 Line050 1 Env05 2.780061e-02
#> 300 Line050 1 Env12 -3.349608e-01
#> 301 Line051 1 Env01 6.295461e-02
#> 302 Line051 1 Env02 -6.491773e-01
#> 303 Line051 1 Env03 1.855970e-01
#> 304 Line051 1 Env04 -3.538478e-01
#> 305 Line051 1 Env05 1.955815e-01
#> 306 Line051 1 Env12 -1.784969e-01
#> 307 Line052 1 Env01 2.300118e-01
#> 308 Line052 1 Env02 1.092563e+00
#> 309 Line052 1 Env03 4.116734e-01
#> 310 Line052 1 Env04 3.119957e-01
#> 311 Line052 1 Env05 -1.271968e-01
#> 312 Line052 1 Env12 2.818212e-01
#> 313 Line053 1 Env01 -8.038103e-01
#> 314 Line053 1 Env02 6.456338e-01
#> 315 Line053 1 Env03 -4.408843e-01
#> 316 Line053 1 Env04 7.154657e-02
#> 317 Line053 1 Env05 8.454802e-02
#> 318 Line053 1 Env12 -2.140067e-01
#> 319 Line054 1 Env01 1.725241e-01
#> 320 Line054 1 Env02 3.199930e-01
#> 321 Line054 1 Env03 1.219829e+00
#> 322 Line054 1 Env04 4.887317e-01
#> 323 Line054 1 Env05 1.774079e-01
#> 324 Line054 1 Env12 3.193326e-01
#> 325 Line055 1 Env01 2.322210e-01
#> 326 Line055 1 Env02 4.712043e-02
#> 327 Line055 1 Env03 2.407725e-01
#> 328 Line055 1 Env04 2.621402e-01
#> 329 Line055 1 Env05 -2.113008e-01
#> 330 Line055 1 Env12 4.393686e-01
#> 331 Line056 1 Env01 4.857638e-01
#> 332 Line056 1 Env02 1.462029e+00
#> 333 Line056 1 Env03 7.668241e-01
#> 334 Line056 1 Env04 2.934110e-01
#> 335 Line056 1 Env05 -5.800810e-02
#> 336 Line056 1 Env12 5.281338e-01
#> 337 Line057 1 Env01 -5.305831e-01
#> 338 Line057 1 Env02 -5.212796e-01
#> 339 Line057 1 Env03 2.703278e-01
#> 340 Line057 1 Env04 -7.091032e-01
#> 341 Line057 1 Env05 -1.712980e-01
#> 342 Line057 1 Env12 -8.476426e-02
#> 343 Line058 1 Env01 -2.933543e-01
#> 344 Line058 1 Env02 -5.984592e-01
#> 345 Line058 1 Env03 -7.518660e-01
#> 346 Line058 1 Env04 4.699980e-02
#> 347 Line058 1 Env05 1.517199e-01
#> 348 Line058 1 Env12 -1.088329e-01
#> 349 Line059 1 Env01 -8.609476e-02
#> 350 Line059 1 Env02 -3.739754e-01
#> 351 Line059 1 Env03 -2.123696e-01
#> 352 Line059 1 Env04 8.042744e-02
#> 353 Line059 1 Env12 -6.708897e-01
#> 354 Line059 1 Env14 -5.863705e-02
#> 355 Line059 1 Env16 2.061107e-01
#> 356 Line059 1 Env17 5.597771e-03
#> 357 Line060 1 Env01 -7.613191e-02
#> 358 Line060 1 Env02 -7.010865e-01
#> 359 Line060 1 Env03 1.262982e-01
#> 360 Line060 1 Env05 -1.337646e-01
#> 361 Line060 1 Env12 -2.278060e-01
#> 362 Line060 1 Env16 -2.127921e-01
#> 363 Line060 1 Env17 5.471738e-01
#> 364 Line061 1 Env01 -1.561251e-01
#> 365 Line061 1 Env02 -3.468041e-01
#> 366 Line061 1 Env03 6.181470e-02
#> 367 Line061 1 Env12 -6.907307e-02
#> 368 Line061 1 Env14 -1.683043e-03
#> 369 Line061 1 Env15 4.945112e-02
#> 370 Line061 1 Env16 6.764717e-01
#> 371 Line061 1 Env17 5.809298e-01
#> 372 Line062 1 Env01 -1.423131e-01
#> 373 Line062 1 Env02 -2.813986e-01
#> 374 Line062 1 Env03 -5.136413e-01
#> 375 Line062 1 Env12 -4.171129e-01
#> 376 Line062 1 Env16 2.057440e-01
#> 377 Line062 1 Env17 1.244247e-01
#> 378 Line063 1 Env01 -9.102868e-02
#> 379 Line063 1 Env02 5.283609e-01
#> 380 Line063 1 Env04 -9.240998e-01
#> 381 Line063 1 Env05 9.901434e-02
#> 382 Line063 1 Env06 -1.952834e-01
#> 383 Line063 1 Env12 -1.484392e-01
#> 384 Line063 1 Env13 -2.129378e-01
#> 385 Line063 1 Env16 -1.258325e-01
#> 386 Line063 1 Env18 1.103699e-01
#> 387 Line064 1 Env01 -1.869488e-01
#> 388 Line064 1 Env02 8.677695e-01
#> 389 Line064 1 Env04 4.671028e-01
#> 390 Line064 1 Env05 3.200409e-02
#> 391 Line064 1 Env06 -2.266894e+00
#> 392 Line064 1 Env12 2.296542e-01
#> 393 Line064 1 Env13 3.911863e-01
#> 394 Line064 1 Env16 -2.711013e-01
#> 395 Line064 1 Env18 2.915482e-01
#> 396 Line065 1 Env01 2.669227e-01
#> 397 Line065 1 Env02 2.182139e-02
#> 398 Line065 1 Env04 2.002387e-01
#> 399 Line065 1 Env05 4.769006e-02
#> 400 Line065 1 Env06 -3.807192e-01
#> 401 Line065 1 Env12 1.397756e-01
#> 402 Line065 1 Env13 -8.421789e-03
#> 403 Line065 1 Env16 1.006226e-02
#> 404 Line065 1 Env18 -3.270017e-01
#> 405 Line066 1 Env01 2.570385e-01
#> 406 Line066 1 Env02 4.174723e-01
#> 407 Line066 1 Env04 -4.026689e-02
#> 408 Line066 1 Env05 9.346171e-02
#> 409 Line066 1 Env06 -1.210664e-01
#> 410 Line066 1 Env12 5.247359e-01
#> 411 Line066 1 Env13 9.551352e-02
#> 412 Line066 1 Env16 3.987491e-01
#> 413 Line066 1 Env18 2.312959e-01
#> 414 Line067 1 Env01 4.342423e-01
#> 415 Line067 1 Env02 9.222437e-01
#> 416 Line067 1 Env04 6.510382e-01
#> 417 Line067 1 Env05 1.950189e-01
#> 418 Line067 1 Env06 -1.430566e+00
#> 419 Line067 1 Env12 3.119729e-01
#> 420 Line067 1 Env13 6.350900e-01
#> 421 Line067 1 Env16 5.180013e-01
#> 422 Line067 1 Env18 2.142932e-02
#> 423 Line068 1 Env01 -1.965588e-01
#> 424 Line068 1 Env02 1.350304e-01
#> 425 Line068 1 Env04 -3.350940e-01
#> 426 Line068 1 Env05 -2.416823e-01
#> 427 Line068 1 Env06 1.182863e-01
#> 428 Line068 1 Env12 4.423834e-02
#> 429 Line068 1 Env13 -3.463254e-02
#> 430 Line068 1 Env16 2.481102e-01
#> 431 Line068 1 Env18 -2.272394e-01
#> 432 Line069 1 Env01 2.366047e-01
#> 433 Line069 1 Env02 -1.485568e-02
#> 434 Line069 1 Env04 1.058382e-01
#> 435 Line069 1 Env05 -8.506918e-02
#> 436 Line069 1 Env06 -5.273734e-01
#> 437 Line069 1 Env12 7.377744e-01
#> 438 Line069 1 Env13 -6.123468e-02
#> 439 Line069 1 Env16 4.418627e-01
#> 440 Line069 1 Env18 -5.034837e-02
#> 441 Line070 1 Env01 9.354409e-02
#> 442 Line070 1 Env02 1.938664e-01
#> 443 Line070 1 Env04 -4.610992e-01
#> 444 Line070 1 Env05 1.531736e-01
#> 445 Line070 1 Env06 7.807899e-01
#> 446 Line070 1 Env12 6.877147e-02
#> 447 Line070 1 Env13 3.314409e-03
#> 448 Line070 1 Env16 -2.310968e-01
#> 449 Line070 1 Env18 3.984533e-01
#> 450 Line071 1 Env01 1.618194e-02
#> 451 Line071 1 Env02 7.318812e-01
#> 452 Line071 1 Env04 8.686717e-01
#> 453 Line071 1 Env05 1.389318e-01
#> 454 Line071 1 Env06 -3.975340e-01
#> 455 Line071 1 Env12 1.989943e-01
#> 456 Line071 1 Env13 7.288768e-01
#> 457 Line071 1 Env16 5.031116e-01
#> 458 Line071 1 Env18 4.375036e-01
#> 459 Line072 1 Env01 2.079899e-01
#> 460 Line072 1 Env02 2.599730e-01
#> 461 Line072 1 Env04 4.988930e-01
#> 462 Line072 1 Env05 1.951043e-01
#> 463 Line072 1 Env06 -8.666216e-01
#> 464 Line072 1 Env12 1.364050e-01
#> 465 Line072 1 Env13 3.070926e-01
#> 466 Line072 1 Env16 4.009654e-01
#> 467 Line072 1 Env18 2.928552e-01
#> 468 Line073 1 Env01 3.321475e-02
#> 469 Line073 1 Env02 3.295133e-01
#> 470 Line073 1 Env04 1.915653e-02
#> 471 Line073 1 Env05 -1.105386e-02
#> 472 Line073 1 Env06 2.450222e-01
#> 473 Line073 1 Env12 6.734953e-01
#> 474 Line073 1 Env13 -4.718115e-01
#> 475 Line073 1 Env16 2.205550e-01
#> 476 Line073 1 Env18 4.898652e-01
#> 477 Line074 1 Env01 1.576434e-01
#> 478 Line074 1 Env02 5.932668e-03
#> 479 Line074 1 Env04 2.175817e-01
#> 480 Line074 1 Env05 1.392754e-01
#> 481 Line074 1 Env06 -4.033720e-01
#> 482 Line074 1 Env12 3.380820e-01
#> 483 Line074 1 Env13 5.304232e-01
#> 484 Line074 1 Env16 2.650118e-01
#> 485 Line074 1 Env18 -2.634026e-01
#> 486 Line075 1 Env01 1.425539e-01
#> 487 Line075 1 Env02 6.080503e-01
#> 488 Line075 1 Env04 4.148130e-01
#> 489 Line075 1 Env05 -2.434198e-01
#> 490 Line075 1 Env06 -3.350900e-01
#> 491 Line075 1 Env12 -4.054981e-01
#> 492 Line075 1 Env13 6.139756e-01
#> 493 Line075 1 Env16 2.280536e-01
#> 494 Line075 1 Env18 -1.756479e-01
#> 495 Line076 1 Env01 -1.693902e-01
#> 496 Line076 1 Env02 -4.075790e-01
#> 497 Line076 1 Env04 -1.152090e-01
#> 498 Line076 1 Env05 -9.658422e-02
#> 499 Line076 1 Env06 -6.716846e-01
#> 500 Line076 1 Env12 1.541689e-01
#> 501 Line076 1 Env13 -4.774714e-01
#> 502 Line076 1 Env16 -1.213911e-01
#> 503 Line076 1 Env18 -5.407339e-01
#> 504 Line077 1 Env01 -5.092080e-01
#> 505 Line077 1 Env02 1.412369e-01
#> 506 Line077 1 Env04 -4.227084e-01
#> 507 Line077 1 Env05 -3.768049e-02
#> 508 Line077 1 Env06 -6.147452e-01
#> 509 Line077 1 Env12 -1.234209e-01
#> 510 Line077 1 Env13 -1.890449e-01
#> 511 Line077 1 Env16 -3.557799e-01
#> 512 Line078 1 Env01 -2.521441e-01
#> 513 Line078 1 Env02 -6.823094e-01
#> 514 Line078 1 Env04 2.553336e-01
#> 515 Line078 1 Env05 -2.408331e-02
#> 516 Line078 1 Env06 -2.925135e-02
#> 517 Line078 1 Env12 3.835318e-01
#> 518 Line078 1 Env13 -4.062034e-01
#> 519 Line078 1 Env16 2.950623e-01
#> 520 Line079 1 Env01 4.052819e-01
#> 521 Line079 1 Env02 4.480267e-01
#> 522 Line079 1 Env04 2.470475e-01
#> 523 Line079 1 Env05 -4.753753e-02
#> 524 Line079 1 Env06 -1.682271e+00
#> 525 Line079 1 Env12 -5.885735e-01
#> 526 Line079 1 Env13 2.931052e-01
#> 527 Line079 1 Env16 3.412919e-01
#> 528 Line080 1 Env01 -3.833070e-01
#> 529 Line080 1 Env02 -2.584534e-01
#> 530 Line080 1 Env04 -6.008344e-01
#> 531 Line080 1 Env05 -5.890180e-02
#> 532 Line080 1 Env06 -1.522873e+00
#> 533 Line080 1 Env12 -1.830092e-01
#> 534 Line080 1 Env13 -2.397509e-01
#> 535 Line080 1 Env16 -2.269742e-01
#> 536 Line081 1 Env01 1.740698e-01
#> 537 Line081 1 Env02 -1.022263e-01
#> 538 Line081 1 Env04 2.620634e-02
#> 539 Line081 1 Env05 8.646398e-03
#> 540 Line081 1 Env06 1.424827e-01
#> 541 Line081 1 Env12 2.281957e-01
#> 542 Line081 1 Env13 1.989165e-02
#> 543 Line081 1 Env16 -7.461598e-01
#> 544 Line082 1 Env01 -8.844210e-02
#> 545 Line082 1 Env02 3.985027e-01
#> 546 Line082 1 Env04 3.900851e-01
#> 547 Line082 1 Env05 -7.344112e-02
#> 548 Line082 1 Env06 -2.082602e-01
#> 549 Line082 1 Env12 2.236558e-01
#> 550 Line082 1 Env13 5.228694e-02
#> 551 Line082 1 Env16 -3.239128e-01
#> 552 Line083 1 Env01 -2.522994e-01
#> 553 Line083 1 Env02 1.914433e-01
#> 554 Line083 1 Env04 5.744011e-02
#> 555 Line083 1 Env05 -1.248968e-01
#> 556 Line083 1 Env06 -2.077271e+00
#> 557 Line083 1 Env12 2.909179e-01
#> 558 Line083 1 Env13 -1.372008e-01
#> 559 Line083 1 Env16 2.739239e-02
#> 560 Line084 1 Env01 6.324415e-02
#> 561 Line084 1 Env02 -2.344700e-01
#> 562 Line084 1 Env04 5.102534e-01
#> 563 Line084 1 Env05 1.456712e-01
#> 564 Line084 1 Env06 1.062160e+00
#> 565 Line084 1 Env12 2.664408e-01
#> 566 Line084 1 Env13 -2.955478e-01
#> 567 Line084 1 Env16 3.106117e-01
#> 568 Line085 1 Env01 3.249822e-01
#> 569 Line085 1 Env02 -6.460501e-01
#> 570 Line085 1 Env04 2.818932e-01
#> 571 Line085 1 Env05 -1.660385e-01
#> 572 Line085 1 Env06 -2.344339e-01
#> 573 Line085 1 Env12 2.125626e-01
#> 574 Line085 1 Env13 3.713947e-01
#> 575 Line085 1 Env16 -1.323891e-02
#> 576 Line086 1 Env01 2.032974e-01
#> 577 Line086 1 Env02 4.126132e-01
#> 578 Line086 1 Env04 1.742236e-01
#> 579 Line086 1 Env05 4.765841e-02
#> 580 Line086 1 Env06 1.557454e+00
#> 581 Line086 1 Env12 3.045225e-02
#> 582 Line086 1 Env13 7.612714e-02
#> 583 Line086 1 Env16 5.206773e-02
#> 584 Line087 1 Env01 4.677012e-01
#> 585 Line087 1 Env02 -3.966694e-01
#> 586 Line087 1 Env04 6.524895e-01
#> 587 Line087 1 Env05 -1.108002e-01
#> 588 Line087 1 Env06 -2.136095e-01
#> 589 Line087 1 Env12 2.604948e-01
#> 590 Line087 1 Env13 1.013600e-01
#> 591 Line087 1 Env16 3.599763e-01
#> 592 Line088 1 Env01 1.525565e-01
#> 593 Line088 1 Env02 4.764816e-02
#> 594 Line088 1 Env04 -2.273090e-01
#> 595 Line088 1 Env05 -1.702222e-01
#> 596 Line088 1 Env06 -6.357379e-01
#> 597 Line088 1 Env12 -4.963463e-01
#> 598 Line088 1 Env13 8.413818e-02
#> 599 Line088 1 Env16 2.580297e-02
#> 600 Line089 1 Env01 9.639551e-02
#> 601 Line089 1 Env02 2.121897e-01
#> 602 Line089 1 Env04 -1.480170e-01
#> 603 Line089 1 Env05 6.412804e-02
#> 604 Line089 1 Env06 2.623419e-01
#> 605 Line089 1 Env12 -3.426124e-01
#> 606 Line089 1 Env13 8.491541e-02
#> 607 Line089 1 Env16 -2.161343e-01
#> 608 Line090 1 Env01 2.979348e-02
#> 609 Line090 1 Env02 2.442084e-02
#> 610 Line090 1 Env04 1.534382e-01
#> 611 Line090 1 Env05 1.044024e-01
#> 612 Line090 1 Env06 -5.949606e-02
#> 613 Line090 1 Env12 -1.481492e-01
#> 614 Line090 1 Env13 2.949678e-01
#> 615 Line090 1 Env16 2.795575e-01
#> 616 Line091 1 Env01 2.428746e-01
#> 617 Line091 1 Env02 -2.863621e-01
#> 618 Line091 1 Env04 5.537529e-01
#> 619 Line091 1 Env05 7.576780e-02
#> 620 Line091 1 Env06 6.799063e-02
#> 621 Line091 1 Env12 -2.224372e-01
#> 622 Line091 1 Env13 4.138274e-01
#> 623 Line091 1 Env16 2.972925e-01
#> 624 Line092 1 Env01 -2.142178e-01
#> 625 Line092 1 Env02 -9.228248e-01
#> 626 Line092 1 Env04 -1.373475e-01
#> 627 Line092 1 Env05 1.289417e-02
#> 628 Line092 1 Env06 4.378774e-02
#> 629 Line092 1 Env12 -2.107141e-01
#> 630 Line092 1 Env13 -2.557244e-01
#> 631 Line092 1 Env16 -2.313384e-01
#> 632 Line093 1 Env01 1.501822e-01
#> 633 Line093 1 Env02 7.067802e-01
#> 634 Line093 1 Env04 -1.145688e-01
#> 635 Line093 1 Env05 2.507241e-02
#> 636 Line093 1 Env06 2.781697e-01
#> 637 Line093 1 Env12 -3.848118e-01
#> 638 Line093 1 Env13 7.348227e-01
#> 639 Line093 1 Env16 4.330995e-01
#> 640 Line094 1 Env01 -2.183776e-01
#> 641 Line094 1 Env02 -6.214291e-01
#> 642 Line094 1 Env04 -3.575900e-01
#> 643 Line094 1 Env05 9.581897e-03
#> 644 Line094 1 Env06 -7.252229e-01
#> 645 Line094 1 Env12 -1.410297e-02
#> 646 Line094 1 Env13 -2.005396e-01
#> 647 Line094 1 Env16 -4.609983e-01
#> 648 Line095 1 Env01 -6.946577e-03
#> 649 Line095 1 Env02 -4.169200e-01
#> 650 Line095 1 Env04 -2.856298e-02
#> 651 Line095 1 Env05 -3.588474e-02
#> 652 Line095 1 Env06 9.561096e-01
#> 653 Line095 1 Env12 -2.400366e-01
#> 654 Line095 1 Env13 4.846609e-01
#> 655 Line095 1 Env16 6.732016e-02
#> 656 Line096 1 Env01 -2.681973e-01
#> 657 Line096 1 Env02 -8.401863e-02
#> 658 Line096 1 Env04 -6.398832e-01
#> 659 Line096 1 Env05 4.500854e-02
#> 660 Line096 1 Env06 5.268705e-02
#> 661 Line096 1 Env12 -3.136378e-01
#> 662 Line096 1 Env13 -1.089401e-01
#> 663 Line096 1 Env16 -2.751301e-01
#> 664 Line097 1 Env01 -3.078422e-01
#> 665 Line097 1 Env02 -8.384960e-01
#> 666 Line097 1 Env04 -5.665016e-01
#> 667 Line097 1 Env05 1.090634e-01
#> 668 Line097 1 Env06 -5.327625e-02
#> 669 Line097 1 Env12 -2.471194e-01
#> 670 Line097 1 Env13 -4.143449e-01
#> 671 Line097 1 Env16 -5.325670e-01
#> 672 Line098 1 Env01 -8.806555e-03
#> 673 Line098 1 Env02 -1.531483e-01
#> 674 Line098 1 Env04 -3.376504e-01
#> 675 Line098 1 Env05 -6.993606e-02
#> 676 Line098 1 Env06 9.975837e-01
#> 677 Line098 1 Env12 2.993540e-02
#> 678 Line098 1 Env13 2.725058e-01
#> 679 Line098 1 Env16 1.408439e-01
#> 680 Line099 1 Env01 -3.137663e-02
#> 681 Line099 1 Env02 1.149663e-01
#> 682 Line099 1 Env04 -2.318922e-01
#> 683 Line099 1 Env05 -4.963748e-02
#> 684 Line099 1 Env06 -3.164694e-01
#> 685 Line099 1 Env12 6.712412e-02
#> 686 Line099 1 Env13 4.435704e-01
#> 687 Line099 1 Env16 1.293682e-01
#> 688 Line100 1 Env01 1.280903e-02
#> 689 Line100 1 Env02 1.249056e-02
#> 690 Line100 1 Env04 1.318304e-01
#> 691 Line100 1 Env05 1.371015e-01
#> 692 Line100 1 Env06 4.249593e+00
#> 693 Line100 1 Env12 2.502357e-01
#> 694 Line100 1 Env13 2.391660e-02
#> 695 Line100 1 Env16 -3.006845e-03
#> 696 Line101 1 Env01 -6.835005e-02
#> 697 Line101 1 Env02 5.668047e-01
#> 698 Line101 1 Env04 3.446720e-01
#> 699 Line101 1 Env05 7.157515e-02
#> 700 Line101 1 Env06 -3.367727e-01
#> 701 Line101 1 Env12 -3.375908e-01
#> 702 Line101 1 Env13 4.807387e-01
#> 703 Line101 1 Env16 6.432069e-02
#> 704 Line102 1 Env01 3.450080e-01
#> 705 Line102 1 Env02 3.801953e-01
#> 706 Line102 1 Env04 -2.485400e-02
#> 707 Line102 1 Env05 -4.085581e-02
#> 708 Line102 1 Env06 -4.192807e-01
#> 709 Line102 1 Env12 2.993851e-01
#> 710 Line102 1 Env13 6.220685e-01
#> 711 Line102 1 Env16 -1.669869e-01
#> 712 Line103 1 Env01 6.637834e-01
#> 713 Line103 1 Env02 1.895912e-01
#> 714 Line103 1 Env04 3.129192e-01
#> 715 Line103 1 Env05 -5.803900e-02
#> 716 Line103 1 Env06 -3.473980e-02
#> 717 Line103 1 Env12 -1.855515e-01
#> 718 Line103 1 Env16 -9.022748e-02
#> 719 Line104 1 Env01 -8.841406e-02
#> 720 Line104 1 Env02 -4.701017e-01
#> 721 Line104 1 Env04 -1.901261e-01
#> 722 Line104 1 Env05 4.413330e-02
#> 723 Line104 1 Env06 7.668714e-01
#> 724 Line104 1 Env12 -5.701120e-02
#> 725 Line104 1 Env16 -2.767922e-01
#> 726 Line105 1 Env01 1.482241e-02
#> 727 Line105 1 Env02 2.879249e-01
#> 728 Line105 1 Env04 -3.883438e-01
#> 729 Line105 1 Env05 5.519336e-02
#> 730 Line105 1 Env06 5.680705e-01
#> 731 Line105 1 Env12 -1.187186e-01
#> 732 Line105 1 Env16 -6.857552e-02
#> 733 Line106 1 Env01 7.089463e-02
#> 734 Line106 1 Env02 -4.296539e-02
#> 735 Line106 1 Env04 -2.088635e-01
#> 736 Line106 1 Env05 7.101175e-02
#> 737 Line106 1 Env06 1.310681e+00
#> 738 Line106 1 Env12 3.007719e-01
#> 739 Line106 1 Env16 1.475245e-01
#> 740 Line107 1 Env01 2.082546e-01
#> 741 Line107 1 Env02 2.238279e-01
#> 742 Line107 1 Env04 7.598188e-01
#> 743 Line107 1 Env05 1.971861e-01
#> 744 Line107 1 Env06 -8.848247e-01
#> 745 Line107 1 Env12 -7.960704e-01
#> 746 Line107 1 Env16 3.740639e-01
#> 747 Line108 1 Env01 4.418734e-01
#> 748 Line108 1 Env02 1.122245e+00
#> 749 Line108 1 Env04 1.007255e+00
#> 750 Line108 1 Env05 1.837998e-01
#> 751 Line108 1 Env06 -9.427803e-01
#> 752 Line108 1 Env12 -2.725408e-02
#> 753 Line108 1 Env16 7.944574e-01
#> 754 Line109 1 Env01 -1.633079e-01
#> 755 Line109 1 Env02 1.064479e-01
#> 756 Line109 1 Env04 -2.216593e-01
#> 757 Line109 1 Env05 3.121341e-02
#> 758 Line109 1 Env06 4.788379e-01
#> 759 Line109 1 Env12 -5.294478e-02
#> 760 Line109 1 Env16 -1.625295e-01
#> 761 Line110 1 Env01 -1.738428e-01
#> 762 Line110 1 Env02 -5.340239e-01
#> 763 Line110 1 Env04 -2.268745e-02
#> 764 Line110 1 Env05 -2.131973e-02
#> 765 Line110 1 Env06 -6.888360e-01
#> 766 Line110 1 Env12 1.178338e-01
#> 767 Line110 1 Env16 -8.741734e-02
#> 768 Line111 1 Env01 -1.511716e-01
#> 769 Line111 1 Env02 -4.846644e-02
#> 770 Line111 1 Env04 -5.433059e-01
#> 771 Line111 1 Env05 -5.056564e-02
#> 772 Line111 1 Env06 4.106853e-01
#> 773 Line111 1 Env12 -6.622727e-01
#> 774 Line111 1 Env16 -8.055345e-02
#> 775 Line112 1 Env01 -7.535772e-02
#> 776 Line112 1 Env02 2.946722e-01
#> 777 Line112 1 Env04 1.801926e-01
#> 778 Line112 1 Env05 -2.682168e-01
#> 779 Line112 1 Env06 -4.733475e-02
#> 780 Line112 1 Env12 2.062386e-01
#> 781 Line112 1 Env16 4.800536e-01
#> 782 Line113 1 Env01 -1.196982e-01
#> 783 Line113 1 Env02 -5.966043e-01
#> 784 Line113 1 Env04 -8.013446e-01
#> 785 Line113 1 Env05 1.359742e-01
#> 786 Line113 1 Env06 -5.167719e-01
#> 787 Line113 1 Env12 3.234872e-02
#> 788 Line113 1 Env16 -2.936829e-01
#> 789 Line114 1 Env01 -3.034310e-01
#> 790 Line114 1 Env02 -1.269674e-01
#> 791 Line114 1 Env04 -3.251235e-01
#> 792 Line114 1 Env05 1.732524e-01
#> 793 Line114 1 Env06 -7.370379e-01
#> 794 Line114 1 Env12 4.856103e-01
#> 795 Line114 1 Env16 4.262991e-02
#> 796 Line115 1 Env01 1.770781e-01
#> 797 Line115 1 Env02 1.959843e-01
#> 798 Line115 1 Env04 -3.979349e-01
#> 799 Line115 1 Env05 1.019614e-01
#> 800 Line115 1 Env06 -5.903255e-01
#> 801 Line115 1 Env12 -4.815431e-01
#> 802 Line115 1 Env16 -8.097298e-02
#> 803 Line116 1 Env01 1.003210e-01
#> 804 Line116 1 Env02 -2.390025e-01
#> 805 Line116 1 Env04 -7.673526e-04
#> 806 Line116 1 Env05 -1.151903e-01
#> 807 Line116 1 Env06 -1.338169e+00
#> 808 Line116 1 Env12 1.480834e-01
#> 809 Line116 1 Env16 -2.116078e-01
#> 810 Line117 1 Env01 1.858786e-01
#> 811 Line117 1 Env02 9.398195e-01
#> 812 Line117 1 Env04 7.829684e-01
#> 813 Line117 1 Env05 -2.730950e-01
#> 814 Line117 1 Env06 1.059047e+00
#> 815 Line117 1 Env12 4.547453e-01
#> 816 Line117 1 Env16 1.521652e-01
#> 817 Line118 1 Env01 -2.397229e-01
#> 818 Line118 1 Env02 9.986833e-02
#> 819 Line118 1 Env04 -1.848607e-01
#> 820 Line118 1 Env05 -1.842875e-01
#> 821 Line118 1 Env06 -9.162668e-01
#> 822 Line118 1 Env12 1.863755e-01
#> 823 Line118 1 Env16 2.991809e-01
#> 824 Line119 1 Env01 -4.366169e-01
#> 825 Line119 1 Env02 -7.337650e-01
#> 826 Line119 1 Env04 2.308120e-01
#> 827 Line119 1 Env05 5.743770e-02
#> 828 Line119 1 Env06 2.006939e-01
#> 829 Line119 1 Env12 9.026351e-02
#> 830 Line119 1 Env16 2.889814e-02
#> 831 Line120 1 Env01 7.425466e-02
#> 832 Line120 1 Env02 -2.056477e-01
#> 833 Line120 1 Env04 -1.902376e-01
#> 834 Line120 1 Env05 1.582772e-01
#> 835 Line120 1 Env06 -9.275684e-02
#> 836 Line120 1 Env12 1.595715e-01
#> 837 Line120 1 Env16 -7.682711e-01
#> 838 Line121 1 Env01 -5.551767e-02
#> 839 Line121 1 Env02 2.750910e-01
#> 840 Line121 1 Env04 -3.944793e-02
#> 841 Line121 1 Env05 -9.113833e-02
#> 842 Line121 1 Env06 9.282952e-01
#> 843 Line121 1 Env12 3.388010e-01
#> 844 Line121 1 Env16 6.957129e-02
#> 845 Line122 1 Env01 -2.973236e-01
#> 846 Line122 1 Env02 -2.453291e-01
#> 847 Line122 1 Env04 -1.434835e-01
#> 848 Line122 1 Env05 1.100682e-01
#> 849 Line122 1 Env06 6.566386e-02
#> 850 Line122 1 Env12 -5.205017e-02
#> 851 Line122 1 Env16 -5.191047e-01
#> 852 Line123 1 Env01 8.842850e-02
#> 853 Line123 1 Env02 -1.240933e-01
#> 854 Line123 1 Env04 2.456913e-02
#> 855 Line123 1 Env05 -1.896183e-02
#> 856 Line123 1 Env06 -5.808275e-01
#> 857 Line123 1 Env12 -1.166185e+00
#> 858 Line123 1 Env16 -5.393043e-01
#> 859 Line124 1 Env01 -1.021001e-01
#> 860 Line124 1 Env02 -3.934267e-01
#> 861 Line124 1 Env04 -2.733048e-01
#> 862 Line124 1 Env05 -4.179445e-01
#> 863 Line124 1 Env06 6.139197e-01
#> 864 Line124 1 Env12 3.508755e-01
#> 865 Line124 1 Env16 1.160610e-01
#> 866 Line125 1 Env01 1.128976e-01
#> 867 Line125 1 Env02 -5.081798e-01
#> 868 Line125 1 Env04 2.365279e-01
#> 869 Line125 1 Env05 -6.264815e-02
#> 870 Line125 1 Env06 1.794402e+00
#> 871 Line125 1 Env12 -1.477289e-02
#> 872 Line125 1 Env16 -1.575082e-01
#> 873 Line126 1 Env01 -1.195118e-02
#> 874 Line126 1 Env02 4.407892e-01
#> 875 Line126 1 Env04 2.740876e-01
#> 876 Line126 1 Env05 -3.592154e-02
#> 877 Line126 1 Env06 -1.072157e+00
#> 878 Line126 1 Env12 -4.129454e-01
#> 879 Line126 1 Env16 -3.874628e-02
#> 880 Line127 1 Env01 2.396329e-02
#> 881 Line127 1 Env02 1.048087e-02
#> 882 Line127 1 Env04 3.986937e-02
#> 883 Line127 1 Env05 -2.341543e-02
#> 884 Line127 1 Env06 1.461678e+00
#> 885 Line127 1 Env12 -1.897399e-01
#> 886 Line127 1 Env16 2.642167e-01
#> 887 Line128 1 Env01 -8.545706e-01
#> 888 Line128 1 Env02 1.433795e-01
#> 889 Line128 1 Env04 -4.210548e-01
#> 890 Line128 1 Env05 1.652684e-02
#> 891 Line128 1 Env06 2.312472e+00
#> 892 Line128 1 Env12 -1.189996e+00
#> 893 Line129 1 Env01 -2.057342e-01
#> 894 Line129 1 Env02 8.677406e-01
#> 895 Line129 1 Env04 -2.255020e-01
#> 896 Line129 1 Env05 1.373900e-01
#> 897 Line129 1 Env06 -3.898062e-01
#> 898 Line129 1 Env12 -1.130769e-01
#> 899 Line130 1 Env01 3.126533e-01
#> 900 Line130 1 Env02 -1.912408e-01
#> 901 Line130 1 Env04 -3.410108e-01
#> 902 Line130 1 Env05 4.863988e-02
#> 903 Line130 1 Env06 3.766091e-01
#> 904 Line130 1 Env12 -1.233152e-01
#> 905 Line131 1 Env01 -2.174273e-01
#> 906 Line131 1 Env02 -6.395125e-01
#> 907 Line131 1 Env04 -2.127088e-01
#> 908 Line131 1 Env05 8.007297e-02
#> 909 Line131 1 Env06 4.652495e-01
#> 910 Line131 1 Env12 -4.771331e-01
#> 911 Line132 1 Env01 5.727874e-01
#> 912 Line132 1 Env02 -2.221363e-01
#> 913 Line132 1 Env04 8.278534e-01
#> 914 Line132 1 Env05 -6.269994e-02
#> 915 Line132 1 Env06 6.503713e-01
#> 916 Line132 1 Env12 -7.144337e-01
#> 917 Line133 1 Env01 4.958825e-03
#> 918 Line133 1 Env02 3.939617e-01
#> 919 Line133 1 Env04 1.366200e-01
#> 920 Line133 1 Env05 -8.728458e-02
#> 921 Line133 1 Env06 -3.196343e-01
#> 922 Line133 1 Env12 -6.023308e-01
#> 923 Line134 1 Env01 -2.297309e-01
#> 924 Line134 1 Env02 -1.525687e+00
#> 925 Line134 1 Env04 -1.591242e-01
#> 926 Line134 1 Env05 2.998548e-02
#> 927 Line134 1 Env06 1.853617e+00
#> 928 Line134 1 Env12 -1.063275e-01
#> 929 Line135 1 Env01 -5.612935e-01
#> 930 Line135 1 Env02 -1.271194e-01
#> 931 Line135 1 Env04 2.513943e-01
#> 932 Line135 1 Env05 1.774165e-01
#> 933 Line135 1 Env06 -1.232555e+00
#> 934 Line135 1 Env12 2.896319e-01
#> 935 Line136 1 Env01 -6.742096e-02
#> 936 Line136 1 Env02 -1.090040e+00
#> 937 Line136 1 Env04 -1.663067e-01
#> 938 Line136 1 Env05 1.733443e-02
#> 939 Line136 1 Env06 2.626332e-01
#> 940 Line136 1 Env12 2.666594e-01
#> 941 Line137 1 Env01 1.270341e-01
#> 942 Line137 1 Env02 3.126247e-01
#> 943 Line137 1 Env04 -7.775224e-02
#> 944 Line137 1 Env05 -1.336803e-01
#> 945 Line137 1 Env06 -4.949346e-01
#> 946 Line137 1 Env12 6.511453e-01
#> 947 Line138 1 Env01 3.357885e-01
#> 948 Line138 1 Env02 7.210201e-01
#> 949 Line138 1 Env04 2.488160e-01
#> 950 Line138 1 Env05 1.703448e-02
#> 951 Line138 1 Env06 -5.252990e-01
#> 952 Line138 1 Env12 -4.580122e-02
#> 953 Line139 1 Env01 -2.214755e-01
#> 954 Line139 1 Env02 -1.702847e-01
#> 955 Line139 1 Env04 -5.127010e-01
#> 956 Line139 1 Env05 -3.864128e-02
#> 957 Line139 1 Env06 -1.267984e+00
#> 958 Line139 1 Env12 6.427901e-01
#> 959 Line140 1 Env01 7.116602e-02
#> 960 Line140 1 Env02 -1.143041e-01
#> 961 Line140 1 Env04 -3.187198e-01
#> 962 Line140 1 Env05 -1.586399e-01
#> 963 Line140 1 Env06 -2.174443e-01
#> 964 Line140 1 Env12 -1.865471e-01
#> 965 Line141 1 Env01 -1.368427e-01
#> 966 Line141 1 Env02 2.548348e-01
#> 967 Line141 1 Env04 -3.497118e-01
#> 968 Line141 1 Env05 1.207305e-01
#> 969 Line141 1 Env06 -5.779473e-01
#> 970 Line141 1 Env12 -2.399975e-01
#> 971 Line142 1 Env01 1.756950e-01
#> 972 Line142 1 Env02 -4.129210e-01
#> 973 Line142 1 Env04 -1.946776e-01
#> 974 Line142 1 Env05 -1.923301e-01
#> 975 Line142 1 Env06 6.617625e-01
#> 976 Line142 1 Env12 1.415259e-01
#> 977 Line143 1 Env01 4.682108e-01
#> 978 Line143 1 Env02 3.493981e-01
#> 979 Line143 1 Env04 4.067684e-01
#> 980 Line143 1 Env05 5.249263e-03
#> 981 Line143 1 Env06 1.639405e+00
#> 982 Line143 1 Env12 2.897368e-01
#> 983 Line144 1 Env01 -2.134325e-01
#> 984 Line144 1 Env02 -5.121323e-01
#> 985 Line144 1 Env04 6.500544e-01
#> 986 Line144 1 Env05 1.260321e-01
#> 987 Line144 1 Env06 -8.939128e-02
#> 988 Line144 1 Env12 9.827909e-02
#> 989 Line145 1 Env01 5.593661e-01
#> 990 Line145 1 Env02 5.149936e-01
#> 991 Line145 1 Env04 2.390935e-01
#> 992 Line145 1 Env05 2.303908e-01
#> 993 Line145 1 Env06 5.478623e-03
#> 994 Line145 1 Env12 4.303462e-01
#> 995 Line146 1 Env01 -7.489180e-01
#> 996 Line146 1 Env02 -1.449524e-01
#> 997 Line146 1 Env04 9.946675e-02
#> 998 Line146 1 Env05 -2.393492e-01
#> 999 Line146 1 Env06 -2.903960e-01
#> 1000 Line146 1 Env12 6.996781e-02
#> 1001 Line147 1 Env01 2.762259e-01
#> 1002 Line147 1 Env02 1.953230e-01
#> 1003 Line147 1 Env04 -7.878872e-01
#> 1004 Line147 1 Env05 -2.285932e-02
#> 1005 Line147 1 Env06 6.048748e-01
#> 1006 Line147 1 Env12 5.858142e-01
#> 1007 Line148 1 Env01 -3.534366e-01
#> 1008 Line148 1 Env02 -3.906466e-02
#> 1009 Line148 1 Env04 3.872565e-01
#> 1010 Line148 1 Env05 -7.832022e-02
#> 1011 Line148 1 Env06 2.869099e+00
#> 1012 Line148 1 Env12 -1.675949e-01
#> 1013 Line149 1 Env01 4.765497e-01
#> 1014 Line149 1 Env02 7.842966e-01
#> 1015 Line149 1 Env04 6.431076e-01
#> 1016 Line149 1 Env05 -1.835873e-01
#> 1017 Line149 1 Env06 5.505016e-01
#> 1018 Line149 1 Env12 -3.167449e-02
#> 1019 Line150 1 Env01 1.073836e-01
#> 1020 Line150 1 Env02 -2.323592e-01
#> 1021 Line150 1 Env04 -4.635913e-01
#> 1022 Line150 1 Env05 -2.973303e-02
#> 1023 Line150 1 Env06 -1.007092e+00
#> 1024 Line150 1 Env12 8.445148e-02
#> 1025 Line151 1 Env01 -2.132955e-01
#> 1026 Line151 1 Env02 -1.662816e-02
#> 1027 Line151 1 Env04 2.426706e-01
#> 1028 Line151 1 Env05 -2.369245e-01
#> 1029 Line151 1 Env06 1.176693e+00
#> 1030 Line151 1 Env12 -7.621165e-01
#> 1031 Line152 1 Env01 1.853834e-01
#> 1032 Line152 1 Env02 1.542544e-01
#> 1033 Line152 1 Env04 5.793025e-02
#> 1034 Line152 1 Env05 1.142466e-01
#> 1035 Line152 1 Env06 -4.856771e-02
#> 1036 Line152 1 Env12 -1.717092e-01
#> 1037 Line153 1 Env01 2.368256e-01
#> 1038 Line153 1 Env02 7.285299e-01
#> 1039 Line153 1 Env04 7.008747e-02
#> 1040 Line153 1 Env05 2.500440e-01
#> 1041 Line153 1 Env06 2.428044e-02
#> 1042 Line153 1 Env12 2.761116e-01
#> 1043 Line154 1 Env01 1.864164e-01
#> 1044 Line154 1 Env02 -1.871320e-01
#> 1045 Line154 1 Env04 1.671299e-01
#> 1046 Line154 1 Env05 -4.566896e-02
#> 1047 Line154 1 Env06 -1.780390e+00
#> 1048 Line154 1 Env12 -6.073038e-02
#> 1049 Line155 1 Env01 -2.324474e-02
#> 1050 Line155 1 Env02 2.186311e-01
#> 1051 Line155 1 Env04 -1.935828e-01
#> 1052 Line155 1 Env05 8.444799e-03
#> 1053 Line155 1 Env06 -6.835029e-01
#> 1054 Line155 1 Env12 -1.385471e-01
#> 1055 Line156 1 Env01 1.189398e-01
#> 1056 Line156 1 Env02 -1.231390e-01
#> 1057 Line156 1 Env04 -6.818481e-02
#> 1058 Line156 1 Env05 1.171222e-01
#> 1059 Line156 1 Env06 9.625171e-01
#> 1060 Line156 1 Env12 1.082147e+00
#> 1061 Line157 1 Env01 -2.191783e-01
#> 1062 Line157 1 Env02 -5.014485e-01
#> 1063 Line157 1 Env04 -3.873679e-01
#> 1064 Line157 1 Env05 -3.420310e-01
#> 1065 Line157 1 Env06 -3.167477e-01
#> 1066 Line157 1 Env14 -6.952899e-02
#> 1067 Line157 1 Env15 -4.917500e-01
#> 1068 Line157 1 Env16 2.943748e-01
#> 1069 Line158 1 Env01 6.755985e-02
#> 1070 Line158 1 Env02 8.371742e-02
#> 1071 Line158 1 Env04 -7.391273e-02
#> 1072 Line158 1 Env05 -5.190978e-03
#> 1073 Line158 1 Env06 -3.555713e-01
#> 1074 Line158 1 Env14 -1.335668e-01
#> 1075 Line158 1 Env15 -5.556341e-02
#> 1076 Line158 1 Env16 -2.263025e-01
#> 1077 Line159 1 Env01 1.773637e-02
#> 1078 Line159 1 Env02 3.534440e-01
#> 1079 Line159 1 Env04 1.936026e-01
#> 1080 Line159 1 Env05 1.833142e-01
#> 1081 Line159 1 Env06 -7.074242e-01
#> 1082 Line159 1 Env14 -1.913775e-01
#> 1083 Line159 1 Env15 -3.410894e-02
#> 1084 Line159 1 Env16 -2.800698e-01
#> 1085 Line160 1 Env01 5.065140e-01
#> 1086 Line160 1 Env02 8.296522e-01
#> 1087 Line160 1 Env04 -1.539283e+00
#> 1088 Line160 1 Env05 4.725632e-03
#> 1089 Line160 1 Env06 -2.393851e-01
#> 1090 Line160 1 Env14 -2.538826e-01
#> 1091 Line160 1 Env15 -6.693635e-02
#> 1092 Line160 1 Env16 3.978045e-01
#> 1093 Line161 1 Env01 -2.617043e-01
#> 1094 Line161 1 Env02 -4.512060e-01
#> 1095 Line161 1 Env04 2.114505e-02
#> 1096 Line161 1 Env05 7.382466e-02
#> 1097 Line161 1 Env06 1.108482e+00
#> 1098 Line161 1 Env14 1.306137e-01
#> 1099 Line161 1 Env15 7.668415e-02
#> 1100 Line161 1 Env16 -1.316111e-01
#> 1101 Line162 1 Env01 -1.879227e-01
#> 1102 Line162 1 Env02 1.017482e+00
#> 1103 Line162 1 Env04 8.515398e-01
#> 1104 Line162 1 Env05 2.681508e-01
#> 1105 Line162 1 Env06 1.431300e-01
#> 1106 Line162 1 Env14 2.692714e-01
#> 1107 Line162 1 Env15 3.586433e-02
#> 1108 Line162 1 Env16 5.121938e-01
#> 1109 Line163 1 Env01 -2.184646e-01
#> 1110 Line163 1 Env02 -2.036130e-01
#> 1111 Line163 1 Env04 -3.845525e-01
#> 1112 Line163 1 Env05 -1.308343e-01
#> 1113 Line163 1 Env06 9.186775e-01
#> 1114 Line163 1 Env14 -1.639546e-01
#> 1115 Line163 1 Env15 3.248656e-01
#> 1116 Line163 1 Env16 9.445598e-02
#> 1117 Line164 1 Env01 -1.016083e-01
#> 1118 Line164 1 Env02 -1.334487e-01
#> 1119 Line164 1 Env04 -2.223178e-01
#> 1120 Line164 1 Env05 -2.699018e-04
#> 1121 Line164 1 Env06 2.030650e-02
#> 1122 Line164 1 Env14 2.429652e-01
#> 1123 Line164 1 Env15 7.291322e-02
#> 1124 Line164 1 Env16 -4.526814e-01
#> 1125 Line165 1 Env01 -2.036844e-01
#> 1126 Line165 1 Env02 -3.507202e-02
#> 1127 Line165 1 Env04 4.959284e-02
#> 1128 Line165 1 Env05 2.114459e-01
#> 1129 Line165 1 Env06 -3.492188e-01
#> 1130 Line165 1 Env14 1.245753e-01
#> 1131 Line165 1 Env15 2.111825e-01
#> 1132 Line165 1 Env16 -1.404748e-01
#> 1133 Line166 1 Env01 4.987449e-01
#> 1134 Line166 1 Env02 6.679068e-01
#> 1135 Line166 1 Env04 7.732405e-01
#> 1136 Line166 1 Env05 1.863928e-01
#> 1137 Line166 1 Env06 -4.593675e-02
#> 1138 Line166 1 Env14 2.387571e-02
#> 1139 Line166 1 Env15 3.775956e-01
#> 1140 Line166 1 Env16 4.172092e-01
#> 1141 Line167 1 Env01 2.431676e-02
#> 1142 Line167 1 Env02 -2.545268e-01
#> 1143 Line167 1 Env04 -2.128584e-01
#> 1144 Line167 1 Env05 -2.064015e-01
#> 1145 Line167 1 Env06 -1.005664e+00
#> 1146 Line167 1 Env14 5.918619e-02
#> 1147 Line167 1 Env15 2.618949e-03
#> 1148 Line167 1 Env16 -4.583742e-01
#> 1149 Line168 1 Env01 9.955550e-01
#> 1150 Line168 1 Env02 -1.379331e-01
#> 1151 Line168 1 Env04 1.051918e+00
#> 1152 Line168 1 Env05 6.330388e-02
#> 1153 Line168 1 Env06 2.505891e+00
#> 1154 Line168 1 Env14 3.472799e-01
#> 1155 Line168 1 Env15 -1.406303e-01
#> 1156 Line168 1 Env16 4.086444e-01
#> 1157 Line169 1 Env01 2.651334e-01
#> 1158 Line169 1 Env02 -1.865236e-01
#> 1159 Line169 1 Env04 -1.762017e-01
#> 1160 Line169 1 Env05 7.409275e-03
#> 1161 Line169 1 Env06 2.808266e-01
#> 1162 Line169 1 Env14 -1.661230e-01
#> 1163 Line169 1 Env15 9.119972e-02
#> 1164 Line169 1 Env16 -7.734473e-02
#> 1165 Line170 1 Env01 -3.225692e-01
#> 1166 Line170 1 Env02 5.044799e-01
#> 1167 Line170 1 Env04 -1.299644e-01
#> 1168 Line170 1 Env05 -1.867275e-02
#> 1169 Line170 1 Env06 -6.525958e-02
#> 1170 Line170 1 Env14 1.278684e-01
#> 1171 Line170 1 Env15 -3.583244e-01
#> 1172 Line170 1 Env16 -1.985487e-01
#> 1173 Line171 1 Env01 -2.019805e-01
#> 1174 Line171 1 Env02 -2.770529e-01
#> 1175 Line171 1 Env04 -2.009276e-02
#> 1176 Line171 1 Env05 5.643849e-02
#> 1177 Line171 1 Env12 -7.286374e-01
#> 1178 Line171 1 Env13 -2.251959e-01
#> 1179 Line171 1 Env16 -2.840857e-01
#> 1180 Line171 1 Env18 -6.889466e-01
#> 1181 Line172 1 Env01 1.204562e-01
#> 1182 Line172 1 Env02 -3.630183e-01
#> 1183 Line172 1 Env04 -2.482447e-01
#> 1184 Line172 1 Env05 2.123947e-02
#> 1185 Line172 1 Env12 -8.218827e-01
#> 1186 Line172 1 Env13 -3.848531e-01
#> 1187 Line172 1 Env16 2.266386e-01
#> 1188 Line173 1 Env01 1.359447e-01
#> 1189 Line173 1 Env02 4.778842e-01
#> 1190 Line173 1 Env04 -3.400311e-01
#> 1191 Line173 1 Env05 2.061882e-02
#> 1192 Line173 1 Env12 -2.762340e-01
#> 1193 Line173 1 Env13 -3.525411e-01
#> 1194 Line173 1 Env16 -5.892844e-02
#> 1195 Line174 1 Env01 -5.181758e-01
#> 1196 Line174 1 Env02 -1.305007e+00
#> 1197 Line174 1 Env04 -4.151119e-01
#> 1198 Line174 1 Env05 -6.757497e-02
#> 1199 Line174 1 Env12 -7.372363e-01
#> 1200 Line174 1 Env13 -1.547518e+00
#> 1201 Line174 1 Env16 -8.926304e-01
#> 1202 Line175 1 Env01 -2.020558e-01
#> 1203 Line175 1 Env02 -8.676696e-01
#> 1204 Line175 1 Env04 -7.882409e-01
#> 1205 Line175 1 Env05 -1.238217e-01
#> 1206 Line175 1 Env12 4.039061e-02
#> 1207 Line175 1 Env13 -5.864823e-01
#> 1208 Line175 1 Env16 -7.650804e-01
#> 1209 Line176 1 Env01 -6.688586e-01
#> 1210 Line176 1 Env02 4.338931e-01
#> 1211 Line176 1 Env04 2.828762e-01
#> 1212 Line176 1 Env05 1.331263e-01
#> 1213 Line176 1 Env12 1.734292e-01
#> 1214 Line176 1 Env13 -3.803521e-01
#> 1215 Line176 1 Env16 3.028822e-02
#> 1216 Line177 1 Env01 1.136843e-01
#> 1217 Line177 1 Env02 -2.999766e-01
#> 1218 Line177 1 Env04 2.896898e-01
#> 1219 Line177 1 Env05 -1.046032e-01
#> 1220 Line177 1 Env12 4.528895e-01
#> 1221 Line177 1 Env13 -6.027598e-01
#> 1222 Line177 1 Env16 -1.733516e-01
#> 1223 Line178 1 Env01 1.041413e-01
#> 1224 Line178 1 Env02 -6.564900e-02
#> 1225 Line178 1 Env04 1.287955e-01
#> 1226 Line178 1 Env05 -1.904583e-01
#> 1227 Line178 1 Env12 2.103252e-01
#> 1228 Line178 1 Env13 9.421443e-02
#> 1229 Line178 1 Env16 3.920008e-01
#> 1230 Line179 1 Env01 5.231494e-03
#> 1231 Line179 1 Env02 -1.897589e-01
#> 1232 Line179 1 Env04 -2.595269e-01
#> 1233 Line179 1 Env05 -2.744185e-02
#> 1234 Line179 1 Env12 2.305235e-01
#> 1235 Line179 1 Env13 -5.796135e-01
#> 1236 Line179 1 Env16 -8.314041e-02
#> 1237 Line180 1 Env01 -1.490777e-01
#> 1238 Line180 1 Env02 -1.570663e-01
#> 1239 Line180 1 Env04 -1.386246e-01
#> 1240 Line180 1 Env05 1.995695e-02
#> 1241 Line180 1 Env12 -2.380685e-01
#> 1242 Line180 1 Env13 -8.086256e-02
#> 1243 Line180 1 Env16 -1.485527e-01
#> 1244 Line181 1 Env01 -2.225201e-01
#> 1245 Line181 1 Env02 4.019941e-01
#> 1246 Line181 1 Env04 -3.553015e-02
#> 1247 Line181 1 Env05 1.398486e-01
#> 1248 Line181 1 Env12 7.720309e-02
#> 1249 Line181 1 Env16 2.331069e-01
#> 1250 Line182 1 Env01 -1.636673e-01
#> 1251 Line182 1 Env02 1.428532e-01
#> 1252 Line182 1 Env04 1.145161e-01
#> 1253 Line182 1 Env05 1.396704e-01
#> 1254 Line182 1 Env12 7.365759e-01
#> 1255 Line182 1 Env16 -3.405077e-02
#> 1256 Line183 1 Env01 2.578664e-01
#> 1257 Line183 1 Env02 2.956322e-01
#> 1258 Line183 1 Env04 1.727087e-01
#> 1259 Line183 1 Env05 5.549704e-02
#> 1260 Line183 1 Env12 4.636791e-02
#> 1261 Line183 1 Env16 3.517908e-02
#> 1262 Line184 1 Env01 2.217476e-01
#> 1263 Line184 1 Env02 -6.586455e-01
#> 1264 Line184 1 Env04 -1.027768e-01
#> 1265 Line184 1 Env05 1.775824e-02
#> 1266 Line184 1 Env12 2.324516e-01
#> 1267 Line184 1 Env16 3.512650e-01
#> 1268 Line185 1 Env01 -3.742134e-02
#> 1269 Line185 1 Env02 -1.000029e-01
#> 1270 Line185 1 Env04 -6.644658e-02
#> 1271 Line185 1 Env05 -5.153917e-02
#> 1272 Line185 1 Env12 2.529418e-01
#> 1273 Line185 1 Env16 2.097098e-02
#> 1274 Line186 1 Env01 -5.241777e-01
#> 1275 Line186 1 Env02 -1.042605e+00
#> 1276 Line186 1 Env04 2.544470e-01
#> 1277 Line186 1 Env05 -2.409410e-01
#> 1278 Line186 1 Env14 -1.563822e-01
#> 1279 Line186 1 Env15 -5.270356e-01
#> 1280 Line186 1 Env16 -2.391873e-01
#> 1281 Line187 1 Env01 2.573562e-02
#> 1282 Line187 1 Env02 -1.705423e-01
#> 1283 Line187 1 Env04 -6.902721e-02
#> 1284 Line187 1 Env05 9.325953e-02
#> 1285 Line187 1 Env14 -1.169568e-01
#> 1286 Line187 1 Env15 1.807126e-01
#> 1287 Line187 1 Env16 -2.150790e-01
#> 1288 Line188 1 Env01 -3.619863e-01
#> 1289 Line188 1 Env02 -3.397633e-01
#> 1290 Line188 1 Env05 -1.353816e-01
#> 1291 Line188 1 Env06 5.661677e-01
#> 1292 Line188 1 Env14 5.497794e-03
#> 1293 Line188 1 Env15 4.501231e-02
#> 1294 Line189 1 Env01 4.564834e-01
#> 1295 Line189 1 Env03 -8.669132e-01
#> 1296 Line189 1 Env05 -1.649194e-01
#> 1297 Line189 1 Env12 2.008999e-01
#> 1298 Line189 1 Env16 5.040174e-01
#> 1299 Line189 1 Env17 4.086759e-01
#> 1300 Line190 2 Env01 -2.467029e-01
#> 1301 Line190 2 Env03 -6.446829e-01
#> 1302 Line190 2 Env13 -8.719655e-02
#> 1303 Line190 2 Env14 1.181100e-01
#> 1304 Line190 2 Env15 -8.941300e-02
#> 1305 Line190 2 Env16 -7.857530e-02
#> 1306 Line190 2 Env17 -1.494379e-01
#> 1307 Line190 2 Env18 -2.171179e-01
#> 1308 Line190 2 Env19 -3.298243e-01
#> 1309 Line191 2 Env01 1.687059e-01
#> 1310 Line191 2 Env03 1.110777e-01
#> 1311 Line191 2 Env13 3.988383e-01
#> 1312 Line191 2 Env14 1.294897e-01
#> 1313 Line191 2 Env15 -7.483975e-01
#> 1314 Line191 2 Env16 1.731905e-01
#> 1315 Line191 2 Env17 -1.023423e+00
#> 1316 Line191 2 Env18 -1.338336e-02
#> 1317 Line191 2 Env19 2.128041e-01
#> 1318 Line192 2 Env01 4.189838e-01
#> 1319 Line192 2 Env03 2.247579e-01
#> 1320 Line192 2 Env13 -2.342904e-01
#> 1321 Line192 2 Env14 -4.719666e-01
#> 1322 Line192 2 Env15 2.026749e-01
#> 1323 Line192 2 Env16 -2.957386e-01
#> 1324 Line192 2 Env17 -1.438240e+00
#> 1325 Line192 2 Env18 -2.045136e-01
#> 1326 Line192 2 Env19 -2.129918e-01
#> 1327 Line193 2 Env01 -2.071893e-01
#> 1328 Line193 2 Env03 -4.609693e-01
#> 1329 Line193 2 Env13 1.864431e-01
#> 1330 Line193 2 Env14 -3.046898e-01
#> 1331 Line193 2 Env15 9.601807e-02
#> 1332 Line193 2 Env16 2.805803e-01
#> 1333 Line193 2 Env17 1.078230e-01
#> 1334 Line193 2 Env18 -6.933108e-01
#> 1335 Line193 2 Env19 1.720651e-01
#> 1336 Line194 2 Env01 -4.575366e-01
#> 1337 Line194 2 Env03 -1.215475e-01
#> 1338 Line194 2 Env13 -6.760010e-03
#> 1339 Line194 2 Env14 1.983246e-01
#> 1340 Line194 2 Env15 -4.325386e-02
#> 1341 Line194 2 Env16 2.412076e-01
#> 1342 Line194 2 Env17 5.220694e-01
#> 1343 Line194 2 Env18 -2.341987e-01
#> 1344 Line194 2 Env19 3.092251e-01
#> 1345 Line195 2 Env01 1.571473e-01
#> 1346 Line195 2 Env03 -1.869104e-01
#> 1347 Line195 2 Env13 6.805687e-02
#> 1348 Line195 2 Env14 6.276376e-02
#> 1349 Line195 2 Env15 1.672268e-01
#> 1350 Line195 2 Env16 4.618796e-01
#> 1351 Line195 2 Env17 3.107480e-01
#> 1352 Line195 2 Env18 1.422411e-01
#> 1353 Line195 2 Env19 4.996033e-01
#> 1354 Line196 2 Env01 1.760891e-03
#> 1355 Line196 2 Env03 6.306314e-01
#> 1356 Line196 2 Env13 3.492399e-01
#> 1357 Line196 2 Env14 9.201682e-02
#> 1358 Line196 2 Env15 6.806634e-02
#> 1359 Line196 2 Env16 -3.969323e-03
#> 1360 Line196 2 Env17 2.981928e-01
#> 1361 Line196 2 Env18 3.783254e-01
#> 1362 Line196 2 Env19 1.174447e-01
#> 1363 Line197 2 Env01 -3.567728e-01
#> 1364 Line197 2 Env03 2.761951e-01
#> 1365 Line197 2 Env13 -2.773629e-01
#> 1366 Line197 2 Env14 -1.727575e-01
#> 1367 Line197 2 Env15 2.006235e-02
#> 1368 Line197 2 Env16 -1.670147e-01
#> 1369 Line197 2 Env17 -1.033768e+00
#> 1370 Line197 2 Env18 -8.714862e-02
#> 1371 Line197 2 Env19 -9.363226e-01
#> 1372 Line198 2 Env01 2.690528e-01
#> 1373 Line198 2 Env03 4.306476e-01
#> 1374 Line198 2 Env13 8.909150e-01
#> 1375 Line198 2 Env14 2.933924e-01
#> 1376 Line198 2 Env15 1.488186e-01
#> 1377 Line198 2 Env17 2.115743e-01
#> 1378 Line198 2 Env19 -2.407259e-01
#> 1379 Line199 2 Env01 3.319041e-01
#> 1380 Line199 2 Env03 -2.381695e-01
#> 1381 Line199 2 Env13 -3.835285e-01
#> 1382 Line199 2 Env14 2.701787e-01
#> 1383 Line199 2 Env15 1.535176e-01
#> 1384 Line199 2 Env17 -3.711978e-01
#> 1385 Line199 2 Env19 3.802298e-01
#> 1386 Line200 2 Env01 8.354222e-02
#> 1387 Line200 2 Env03 -1.182127e-01
#> 1388 Line200 2 Env13 -5.780834e-01
#> 1389 Line200 2 Env14 -2.712577e-01
#> 1390 Line200 2 Env15 8.122138e-02
#> 1391 Line200 2 Env17 -3.330592e-01
#> 1392 Line200 2 Env19 2.722668e-01
#> 1393 Line201 2 Env01 3.100455e-01
#> 1394 Line201 2 Env03 1.293216e-01
#> 1395 Line201 2 Env13 2.863349e-01
#> 1396 Line201 2 Env14 3.105272e-03
#> 1397 Line201 2 Env15 1.057407e-01
#> 1398 Line201 2 Env17 9.028111e-02
#> 1399 Line201 2 Env19 2.423283e-01
#> 1400 Line202 2 Env01 -3.371369e-01
#> 1401 Line202 2 Env03 -2.617254e-01
#> 1402 Line202 2 Env13 -7.071354e-02
#> 1403 Line202 2 Env14 3.365761e-02
#> 1404 Line202 2 Env15 -3.725040e-02
#> 1405 Line202 2 Env17 1.021360e+00
#> 1406 Line202 2 Env19 2.936184e-01
#> 1407 Line203 2 Env01 5.967607e-02
#> 1408 Line203 2 Env03 4.979202e-01
#> 1409 Line203 2 Env13 1.906598e-01
#> 1410 Line203 2 Env14 9.843198e-02
#> 1411 Line203 2 Env15 4.297345e-01
#> 1412 Line203 2 Env17 -6.829786e-02
#> 1413 Line203 2 Env19 -1.078641e-01
#> 1414 Line204 2 Env01 2.043299e-01
#> 1415 Line204 2 Env03 2.442903e-01
#> 1416 Line204 2 Env13 -7.339462e-01
#> 1417 Line204 2 Env14 -1.407624e-01
#> 1418 Line204 2 Env15 -1.356024e-01
#> 1419 Line204 2 Env17 -1.001418e+00
#> 1420 Line204 2 Env19 -6.667264e-01
#> 1421 Line205 2 Env01 -1.272942e-01
#> 1422 Line205 2 Env03 -3.616210e-01
#> 1423 Line205 2 Env13 -2.902371e-01
#> 1424 Line205 2 Env14 9.066221e-02
#> 1425 Line205 2 Env15 -2.167431e-01
#> 1426 Line205 2 Env17 1.016307e-01
#> 1427 Line205 2 Env19 -2.835476e-01
#> 1428 Line206 2 Env01 3.328628e-01
#> 1429 Line206 2 Env03 1.545327e+00
#> 1430 Line206 2 Env13 1.146784e-01
#> 1431 Line206 2 Env14 -5.175286e-02
#> 1432 Line206 2 Env15 5.571901e-02
#> 1433 Line206 2 Env17 -1.657928e-01
#> 1434 Line206 2 Env19 -1.081553e-01
#> 1435 Line207 2 Env01 2.148585e-01
#> 1436 Line207 2 Env03 3.797163e-01
#> 1437 Line207 2 Env13 3.994658e-01
#> 1438 Line207 2 Env14 1.525898e-01
#> 1439 Line207 2 Env15 2.877790e-01
#> 1440 Line207 2 Env17 -2.325123e-01
#> 1441 Line207 2 Env19 -2.872936e-02
#> 1442 Line208 2 Env01 5.331100e-01
#> 1443 Line208 2 Env03 3.502031e-01
#> 1444 Line208 2 Env13 9.355572e-01
#> 1445 Line208 2 Env14 3.917623e-02
#> 1446 Line208 2 Env15 -2.355544e-01
#> 1447 Line208 2 Env17 3.140896e-02
#> 1448 Line208 2 Env19 6.238919e-02
#> 1449 Line209 2 Env01 1.810794e-01
#> 1450 Line209 2 Env03 4.961311e-02
#> 1451 Line209 2 Env13 -1.344736e-02
#> 1452 Line209 2 Env14 -1.879184e-02
#> 1453 Line209 2 Env15 1.262485e-01
#> 1454 Line209 2 Env17 -3.961875e-01
#> 1455 Line209 2 Env19 3.286584e-01
#> 1456 Line210 2 Env01 -1.608334e-01
#> 1457 Line210 2 Env03 -3.096660e-01
#> 1458 Line210 2 Env13 -1.199350e-01
#> 1459 Line210 2 Env14 2.670254e-02
#> 1460 Line210 2 Env15 1.003921e-01
#> 1461 Line210 2 Env17 1.468308e-01
#> 1462 Line210 2 Env19 -2.516882e-01
#> 1463 Line211 2 Env01 -4.586271e-01
#> 1464 Line211 2 Env03 -9.363369e-01
#> 1465 Line211 2 Env13 -8.995900e-01
#> 1466 Line211 2 Env14 -1.803949e-01
#> 1467 Line211 2 Env15 -4.274682e-02
#> 1468 Line211 2 Env17 -6.178703e-01
#> 1469 Line211 2 Env19 -1.400095e-01
#> 1470 Line212 2 Env01 -7.888489e-01
#> 1471 Line212 2 Env03 -1.447264e+00
#> 1472 Line212 2 Env13 -1.105405e+00
#> 1473 Line212 2 Env14 -1.448364e-01
#> 1474 Line212 2 Env15 -4.607288e-01
#> 1475 Line212 2 Env17 -1.105240e-01
#> 1476 Line212 2 Env19 -1.280319e+00
#> 1477 Line213 2 Env01 -4.078532e-01
#> 1478 Line213 2 Env03 7.256631e-01
#> 1479 Line213 2 Env13 2.590986e-01
#> 1480 Line213 2 Env14 -1.121530e-01
#> 1481 Line213 2 Env15 3.555918e-01
#> 1482 Line213 2 Env17 -2.744267e-01
#> 1483 Line213 2 Env19 -2.419040e-01
#> 1484 Line214 2 Env01 -1.031360e+00
#> 1485 Line214 2 Env03 -1.741829e+00
#> 1486 Line214 2 Env13 -1.299459e+00
#> 1487 Line214 2 Env14 4.989010e-02
#> 1488 Line214 2 Env15 -3.968601e-02
#> 1489 Line214 2 Env17 -4.037851e-01
#> 1490 Line214 2 Env19 -4.068827e-01
#> 1491 Line215 2 Env01 -2.596769e-01
#> 1492 Line215 2 Env03 5.354136e-01
#> 1493 Line215 2 Env13 5.264774e-01
#> 1494 Line215 2 Env14 -2.123606e-01
#> 1495 Line215 2 Env15 3.469922e-01
#> 1496 Line215 2 Env17 3.094400e-01
#> 1497 Line215 2 Env19 -2.572548e-01
#> 1498 Line216 2 Env01 -2.174157e-01
#> 1499 Line216 2 Env03 -1.595532e-01
#> 1500 Line216 2 Env13 -8.740928e-02
#> 1501 Line216 2 Env14 1.316895e-02
#> 1502 Line216 2 Env15 6.186735e-02
#> 1503 Line216 2 Env17 8.785831e-03
#> 1504 Line216 2 Env19 3.264209e-01
#> 1505 Line217 2 Env01 -3.253254e-01
#> 1506 Line217 2 Env03 2.897036e-01
#> 1507 Line217 2 Env13 2.394513e-01
#> 1508 Line217 2 Env14 -1.378457e-01
#> 1509 Line217 2 Env15 -7.758133e-02
#> 1510 Line217 2 Env17 1.399288e-01
#> 1511 Line217 2 Env19 8.041877e-02
#> 1512 Line218 2 Env01 2.671828e-01
#> 1513 Line218 2 Env03 4.565227e-01
#> 1514 Line218 2 Env13 1.661973e-01
#> 1515 Line218 2 Env14 -1.266252e-02
#> 1516 Line218 2 Env15 1.854602e-02
#> 1517 Line218 2 Env17 1.731458e-01
#> 1518 Line218 2 Env19 3.452929e-01
#> 1519 Line219 2 Env01 -9.409747e-02
#> 1520 Line219 2 Env03 -6.819739e-02
#> 1521 Line219 2 Env13 2.546851e-01
#> 1522 Line219 2 Env14 3.018502e-02
#> 1523 Line219 2 Env15 -3.328848e-01
#> 1524 Line219 2 Env17 1.343052e-01
#> 1525 Line219 2 Env19 -4.405477e-01
#> 1526 Line220 2 Env01 -2.760948e-01
#> 1527 Line220 2 Env03 -9.466426e-01
#> 1528 Line220 2 Env13 -7.150308e-01
#> 1529 Line220 2 Env14 -8.408623e-02
#> 1530 Line220 2 Env15 -3.412695e-01
#> 1531 Line220 2 Env17 -2.360894e-01
#> 1532 Line220 2 Env19 -9.080969e-01
#> 1533 Line221 2 Env01 1.273373e-01
#> 1534 Line221 2 Env03 8.803718e-03
#> 1535 Line221 2 Env13 -4.559545e-01
#> 1536 Line221 2 Env14 3.269013e-01
#> 1537 Line221 2 Env15 3.878246e-01
#> 1538 Line221 2 Env17 -2.562327e-01
#> 1539 Line221 2 Env19 -2.315453e-02
#> 1540 Line222 2 Env01 -9.924203e-01
#> 1541 Line222 2 Env03 -1.827389e+00
#> 1542 Line222 2 Env13 -1.211832e+00
#> 1543 Line222 2 Env14 -7.644634e-02
#> 1544 Line222 2 Env15 -1.534307e-01
#> 1545 Line222 2 Env17 -1.178856e+00
#> 1546 Line222 2 Env19 -8.740261e-01
#> 1547 Line223 2 Env01 -3.467695e-01
#> 1548 Line223 2 Env03 6.465684e-01
#> 1549 Line223 2 Env13 4.311653e-01
#> 1550 Line223 2 Env14 -1.040621e-01
#> 1551 Line223 2 Env15 5.502514e-02
#> 1552 Line223 2 Env17 -3.213095e-01
#> 1553 Line223 2 Env19 6.230110e-01
#> 1554 Line224 2 Env01 -3.787738e-03
#> 1555 Line224 2 Env03 3.127991e-01
#> 1556 Line224 2 Env13 6.662751e-01
#> 1557 Line224 2 Env14 3.031787e-02
#> 1558 Line224 2 Env15 1.532003e-03
#> 1559 Line224 2 Env17 1.162970e-01
#> 1560 Line224 2 Env19 4.216064e-01
#> 1561 Line225 2 Env01 -9.477768e-02
#> 1562 Line225 2 Env03 -6.838694e-02
#> 1563 Line225 2 Env13 -4.917890e-01
#> 1564 Line225 2 Env14 -1.110439e-01
#> 1565 Line225 2 Env15 -1.599266e-01
#> 1566 Line225 2 Env17 -4.104501e-01
#> 1567 Line225 2 Env19 2.755306e-01
#> 1568 Line226 2 Env01 -4.839686e-01
#> 1569 Line226 2 Env03 3.185184e-01
#> 1570 Line226 2 Env13 -3.417570e-01
#> 1571 Line226 2 Env14 -9.571416e-02
#> 1572 Line226 2 Env15 -1.092072e-01
#> 1573 Line226 2 Env17 -3.221322e-01
#> 1574 Line226 2 Env19 -6.835673e-01
#> 1575 Line227 2 Env01 -3.947023e-02
#> 1576 Line227 2 Env03 1.003465e+00
#> 1577 Line227 2 Env13 -2.667152e-01
#> 1578 Line227 2 Env14 1.941492e-02
#> 1579 Line227 2 Env15 -1.247179e-01
#> 1580 Line227 2 Env17 1.242304e-01
#> 1581 Line227 2 Env19 1.537592e-01
#> 1582 Line228 2 Env01 -7.247489e-01
#> 1583 Line228 2 Env03 -1.848849e+00
#> 1584 Line228 2 Env13 1.165696e-01
#> 1585 Line228 2 Env14 -4.662808e-02
#> 1586 Line228 2 Env15 -8.161233e-02
#> 1587 Line228 2 Env17 -1.662108e-01
#> 1588 Line228 2 Env19 -3.151662e-01
#> 1589 Line229 2 Env01 -2.827544e-01
#> 1590 Line229 2 Env03 -7.604264e-01
#> 1591 Line229 2 Env13 -6.587315e-01
#> 1592 Line229 2 Env14 4.759949e-02
#> 1593 Line229 2 Env15 2.844318e-01
#> 1594 Line229 2 Env17 1.155264e-01
#> 1595 Line229 2 Env19 9.959918e-02
#> 1596 Line230 2 Env01 -2.639367e-02
#> 1597 Line230 2 Env03 5.554392e-01
#> 1598 Line230 2 Env13 6.341129e-01
#> 1599 Line230 2 Env14 1.945289e-01
#> 1600 Line230 2 Env15 2.481426e-01
#> 1601 Line230 2 Env17 5.166635e-01
#> 1602 Line230 2 Env19 3.380063e-01
#> 1603 Line231 2 Env01 4.324544e-01
#> 1604 Line231 2 Env03 7.023439e-01
#> 1605 Line231 2 Env13 -9.741752e-02
#> 1606 Line231 2 Env14 -2.123166e-01
#> 1607 Line231 2 Env15 -6.908418e-02
#> 1608 Line231 2 Env17 4.995439e-01
#> 1609 Line231 2 Env19 3.131867e-01
#> 1610 Line232 2 Env01 -4.781867e-02
#> 1611 Line232 2 Env03 1.218131e+00
#> 1612 Line232 2 Env13 -5.391155e-01
#> 1613 Line232 2 Env14 5.690459e-02
#> 1614 Line232 2 Env15 1.165912e-01
#> 1615 Line232 2 Env17 1.610512e-01
#> 1616 Line232 2 Env19 5.096629e-01
#> 1617 Line233 2 Env01 -5.123864e-01
#> 1618 Line233 2 Env03 -3.829060e-01
#> 1619 Line233 2 Env13 -5.683575e-01
#> 1620 Line233 2 Env14 -8.256690e-02
#> 1621 Line233 2 Env15 -1.620753e-01
#> 1622 Line233 2 Env17 -6.603642e-01
#> 1623 Line233 2 Env19 -3.151887e-01
#> 1624 Line234 2 Env01 -1.301856e-01
#> 1625 Line234 2 Env03 -9.731527e-01
#> 1626 Line234 2 Env13 -5.194404e-01
#> 1627 Line234 2 Env14 -5.052373e-02
#> 1628 Line234 2 Env15 -1.280921e-01
#> 1629 Line234 2 Env17 -1.782840e-02
#> 1630 Line234 2 Env19 9.464481e-02
#> 1631 Line235 2 Env01 -2.302781e-01
#> 1632 Line235 2 Env03 6.396205e-01
#> 1633 Line235 2 Env13 3.410425e-01
#> 1634 Line235 2 Env14 1.764649e-01
#> 1635 Line235 2 Env15 2.570484e-01
#> 1636 Line235 2 Env17 -1.040277e-01
#> 1637 Line235 2 Env19 -2.575158e-01
#> 1638 Line236 2 Env01 1.298907e-01
#> 1639 Line236 2 Env03 7.256839e-01
#> 1640 Line236 2 Env13 4.177816e-01
#> 1641 Line236 2 Env14 3.655089e-01
#> 1642 Line236 2 Env15 1.298716e-01
#> 1643 Line236 2 Env17 1.016651e+00
#> 1644 Line236 2 Env19 5.063493e-01
#> 1645 Line237 2 Env01 4.557460e-01
#> 1646 Line237 2 Env03 3.652609e-01
#> 1647 Line237 2 Env13 4.992299e-01
#> 1648 Line237 2 Env14 -1.917633e-01
#> 1649 Line237 2 Env15 -3.911502e-01
#> 1650 Line237 2 Env17 -3.753477e-03
#> 1651 Line237 2 Env19 -6.415892e-01
#> 1652 Line238 2 Env01 1.158675e-01
#> 1653 Line238 2 Env03 4.594287e-01
#> 1654 Line238 2 Env13 4.227448e-01
#> 1655 Line238 2 Env14 3.842466e-01
#> 1656 Line238 2 Env15 -3.922741e-01
#> 1657 Line238 2 Env17 1.241782e-01
#> 1658 Line238 2 Env19 2.216933e-01
#> 1659 Line239 2 Env01 -4.447931e-01
#> 1660 Line239 2 Env03 5.211892e-01
#> 1661 Line239 2 Env13 9.307086e-02
#> 1662 Line239 2 Env14 2.119872e-01
#> 1663 Line239 2 Env15 -2.947631e-01
#> 1664 Line239 2 Env17 3.073114e-01
#> 1665 Line239 2 Env19 -8.714145e-02
#> 1666 Line240 2 Env01 1.948553e-02
#> 1667 Line240 2 Env03 -3.466573e-01
#> 1668 Line240 2 Env13 2.110407e-01
#> 1669 Line240 2 Env14 -4.573365e-01
#> 1670 Line240 2 Env15 -7.302890e-02
#> 1671 Line240 2 Env17 1.456265e-01
#> 1672 Line240 2 Env19 5.653379e-01
#> 1673 Line241 2 Env01 1.608367e-01
#> 1674 Line241 2 Env03 3.344841e-02
#> 1675 Line241 2 Env13 5.236474e-02
#> 1676 Line241 2 Env14 1.098178e-01
#> 1677 Line241 2 Env15 2.058359e-01
#> 1678 Line241 2 Env17 6.291845e-02
#> 1679 Line241 2 Env19 -7.752862e-01
#> 1680 Line242 2 Env01 5.575963e-01
#> 1681 Line242 2 Env03 7.478536e-01
#> 1682 Line242 2 Env13 7.875884e-01
#> 1683 Line242 2 Env14 7.919441e-02
#> 1684 Line242 2 Env15 8.306138e-02
#> 1685 Line242 2 Env17 -5.731105e-03
#> 1686 Line242 2 Env19 6.760806e-01
#> 1687 Line243 2 Env01 -1.187855e-02
#> 1688 Line243 2 Env03 -1.151492e+00
#> 1689 Line243 2 Env13 -9.322421e-01
#> 1690 Line243 2 Env14 -2.968116e-01
#> 1691 Line243 2 Env15 -8.169389e-02
#> 1692 Line243 2 Env17 -2.816801e-01
#> 1693 Line243 2 Env19 -4.018273e-01
#> 1694 Line244 2 Env01 3.134646e-01
#> 1695 Line244 2 Env03 7.248436e-01
#> 1696 Line244 2 Env13 5.336308e-01
#> 1697 Line244 2 Env14 1.583995e-02
#> 1698 Line244 2 Env15 1.503223e-01
#> 1699 Line244 2 Env17 1.987506e-01
#> 1700 Line244 2 Env19 -1.889618e-03
#> 1701 Line245 2 Env01 -1.305971e-01
#> 1702 Line245 2 Env03 9.351805e-02
#> 1703 Line245 2 Env13 -3.484745e-01
#> 1704 Line245 2 Env14 -2.961806e-01
#> 1705 Line245 2 Env15 -1.413756e-01
#> 1706 Line245 2 Env17 4.066375e-01
#> 1707 Line245 2 Env19 -7.364531e-01
#> 1708 Line246 2 Env01 -5.256323e-01
#> 1709 Line246 2 Env03 4.742684e-02
#> 1710 Line246 2 Env13 -1.223944e-01
#> 1711 Line246 2 Env14 1.700727e-01
#> 1712 Line246 2 Env15 -1.173376e-01
#> 1713 Line246 2 Env17 -4.311634e-01
#> 1714 Line246 2 Env19 -1.900326e-01
#> 1715 Line247 2 Env01 -2.901083e-01
#> 1716 Line247 2 Env03 2.015246e-01
#> 1717 Line247 2 Env13 6.541113e-02
#> 1718 Line247 2 Env14 5.718822e-02
#> 1719 Line247 2 Env15 5.788150e-01
#> 1720 Line247 2 Env17 -4.072882e-01
#> 1721 Line247 2 Env19 4.842373e-01
#> 1722 Line248 2 Env01 5.588408e-02
#> 1723 Line248 2 Env03 6.326527e-01
#> 1724 Line248 2 Env13 3.782399e-01
#> 1725 Line248 2 Env14 1.719810e-01
#> 1726 Line248 2 Env15 1.243039e-01
#> 1727 Line248 2 Env17 1.493840e-01
#> 1728 Line248 2 Env19 1.274217e-02
#> 1729 Line249 2 Env01 -2.355957e-01
#> 1730 Line249 2 Env03 -3.791777e-01
#> 1731 Line249 2 Env13 -1.321154e-01
#> 1732 Line249 2 Env14 -1.452268e-01
#> 1733 Line249 2 Env15 -1.309082e-01
#> 1734 Line249 2 Env17 -4.669007e-01
#> 1735 Line249 2 Env19 -6.889591e-02
#> 1736 Line250 2 Env01 2.371615e-01
#> 1737 Line250 2 Env03 -4.185101e-02
#> 1738 Line250 2 Env13 -9.156330e-02
#> 1739 Line250 2 Env14 1.283034e-01
#> 1740 Line250 2 Env15 4.476997e-02
#> 1741 Line250 2 Env17 1.158998e-01
#> 1742 Line250 2 Env19 2.941811e-02
#> 1743 Line251 2 Env01 2.492133e-01
#> 1744 Line251 2 Env03 -3.801896e-01
#> 1745 Line251 2 Env13 4.979891e-01
#> 1746 Line251 2 Env14 4.634080e-02
#> 1747 Line251 2 Env15 3.229068e-02
#> 1748 Line251 2 Env17 4.999292e-01
#> 1749 Line251 2 Env19 6.537349e-01
#> 1750 Line252 2 Env01 -2.518948e-01
#> 1751 Line252 2 Env03 -1.481302e+00
#> 1752 Line252 2 Env13 -3.080461e-02
#> 1753 Line252 2 Env14 2.310863e-01
#> 1754 Line252 2 Env15 1.564429e-01
#> 1755 Line252 2 Env17 -3.739669e-01
#> 1756 Line252 2 Env19 -1.540776e-01
#> 1757 Line253 2 Env01 6.424570e-01
#> 1758 Line253 2 Env03 7.424792e-01
#> 1759 Line253 2 Env13 -1.338336e-01
#> 1760 Line253 2 Env14 -3.008236e-02
#> 1761 Line253 2 Env15 -2.761312e-02
#> 1762 Line253 2 Env17 6.692129e-02
#> 1763 Line253 2 Env19 4.575102e-01
#> 1764 Line254 2 Env01 3.331475e-01
#> 1765 Line254 2 Env03 1.068957e+00
#> 1766 Line254 2 Env13 3.773905e-01
#> 1767 Line254 2 Env14 -4.022499e-01
#> 1768 Line254 2 Env15 -5.586640e-02
#> 1769 Line254 2 Env17 -8.540998e-02
#> 1770 Line254 2 Env19 -6.479672e-01
#> 1771 Line255 2 Env01 3.221253e-01
#> 1772 Line255 2 Env03 1.364552e+00
#> 1773 Line255 2 Env13 6.358602e-02
#> 1774 Line255 2 Env14 -3.027034e-02
#> 1775 Line255 2 Env15 -1.098089e-01
#> 1776 Line255 2 Env17 5.790672e-01
#> 1777 Line255 2 Env19 -2.594306e-01
#> 1778 Line256 2 Env01 5.307657e-01
#> 1779 Line256 2 Env03 -4.226522e-01
#> 1780 Line256 2 Env13 6.836115e-01
#> 1781 Line256 2 Env14 5.387919e-02
#> 1782 Line256 2 Env15 1.025850e-01
#> 1783 Line256 2 Env17 4.601350e-01
#> 1784 Line256 2 Env19 -4.377997e-02
#> 1785 Line257 2 Env01 2.949436e-01
#> 1786 Line257 2 Env03 -2.205578e-01
#> 1787 Line257 2 Env13 3.017326e-01
#> 1788 Line257 2 Env14 -3.235252e-02
#> 1789 Line257 2 Env15 7.975574e-02
#> 1790 Line257 2 Env17 -5.396653e-02
#> 1791 Line257 2 Env19 4.677262e-01
#> 1792 Line258 2 Env01 6.015765e-01
#> 1793 Line258 2 Env03 5.364512e-01
#> 1794 Line258 2 Env13 1.186772e+00
#> 1795 Line258 2 Env14 1.278977e-01
#> 1796 Line258 2 Env15 2.346594e-01
#> 1797 Line258 2 Env17 1.517140e-01
#> 1798 Line258 2 Env19 4.195955e-01
#> 1799 Line259 2 Env01 5.869361e-01
#> 1800 Line259 2 Env03 9.976155e-01
#> 1801 Line259 2 Env13 6.243101e-01
#> 1802 Line259 2 Env14 1.730923e-01
#> 1803 Line259 2 Env15 -2.667556e-01
#> 1804 Line259 2 Env17 -2.851494e-01
#> 1805 Line259 2 Env19 -1.939394e-01
#> 1806 Line260 2 Env01 5.010746e-01
#> 1807 Line260 2 Env03 1.276864e-02
#> 1808 Line260 2 Env13 3.554906e-01
#> 1809 Line260 2 Env14 -1.264507e-01
#> 1810 Line260 2 Env15 -2.337964e-01
#> 1811 Line260 2 Env17 8.781313e-02
#> 1812 Line260 2 Env19 2.159025e-01
#> 1813 Line261 2 Env01 2.621107e-01
#> 1814 Line261 2 Env03 6.879507e-01
#> 1815 Line261 2 Env13 3.817430e-01
#> 1816 Line261 2 Env14 5.088032e-02
#> 1817 Line261 2 Env15 8.190564e-02
#> 1818 Line261 2 Env17 3.294735e-01
#> 1819 Line261 2 Env19 4.472313e-01
#> 1820 Line262 2 Env01 2.665578e-01
#> 1821 Line262 2 Env03 -1.192519e+00
#> 1822 Line262 2 Env13 3.325178e-02
#> 1823 Line262 2 Env14 6.809504e-02
#> 1824 Line262 2 Env15 -2.714150e-01
#> 1825 Line262 2 Env17 6.210615e-03
#> 1826 Line262 2 Env19 3.047550e-01
#> 1827 Line263 2 Env01 2.841283e-01
#> 1828 Line263 2 Env03 2.426294e-02
#> 1829 Line263 2 Env13 5.100319e-02
#> 1830 Line263 2 Env14 9.822627e-02
#> 1831 Line263 2 Env15 9.101592e-02
#> 1832 Line263 2 Env17 4.412858e-01
#> 1833 Line263 2 Env19 2.353783e-01
#> 1834 Line264 2 Env01 4.003944e-01
#> 1835 Line264 2 Env03 4.456697e-01
#> 1836 Line264 2 Env13 1.437006e-01
#> 1837 Line264 2 Env14 1.534388e-01
#> 1838 Line264 2 Env15 6.903512e-02
#> 1839 Line264 2 Env17 5.371302e-02
#> 1840 Line264 2 Env19 2.315154e-01
#> 1841 Line265 2 Env01 4.477369e-02
#> 1842 Line265 2 Env03 -2.770787e-01
#> 1843 Line265 2 Env13 -3.644549e-01
#> 1844 Line265 2 Env14 -2.792831e-02
#> 1845 Line265 2 Env15 -1.463398e-01
#> 1846 Line265 2 Env17 -1.473936e-01
#> 1847 Line265 2 Env19 -4.445384e-02
#> 1848 Line266 2 Env01 4.167222e-01
#> 1849 Line266 2 Env03 3.097188e-03
#> 1850 Line266 2 Env13 1.688426e-01
#> 1851 Line266 2 Env14 2.976751e-01
#> 1852 Line266 2 Env15 2.332210e-01
#> 1853 Line266 2 Env17 2.395303e-01
#> 1854 Line266 2 Env19 4.764450e-01
#> 1855 Line267 2 Env01 7.170697e-01
#> 1856 Line267 2 Env03 -1.308804e-01
#> 1857 Line267 2 Env13 -1.141807e-01
#> 1858 Line267 2 Env14 -1.070139e-01
#> 1859 Line267 2 Env15 2.590456e-01
#> 1860 Line267 2 Env17 1.857949e-01
#> 1861 Line267 2 Env19 1.455778e-01
#> 1862 Line268 2 Env01 3.089515e-02
#> 1863 Line268 2 Env03 -4.224645e-01
#> 1864 Line268 2 Env13 6.978742e-01
#> 1865 Line268 2 Env14 1.574000e-01
#> 1866 Line268 2 Env15 -5.832505e-02
#> 1867 Line268 2 Env17 1.098524e-01
#> 1868 Line269 2 Env01 3.300543e-02
#> 1869 Line269 2 Env03 -5.786986e-01
#> 1870 Line269 2 Env13 -3.211487e-01
#> 1871 Line269 2 Env14 -1.512130e-01
#> 1872 Line269 2 Env15 1.094257e-01
#> 1873 Line269 2 Env17 7.428255e-02
#> 1874 Line270 2 Env01 1.687485e-01
#> 1875 Line270 2 Env03 6.942301e-02
#> 1876 Line270 2 Env13 -1.075844e-02
#> 1877 Line270 2 Env14 6.976972e-02
#> 1878 Line270 2 Env15 -4.163946e-01
#> 1879 Line270 2 Env17 1.185361e+00
#> 1880 Line271 2 Env01 1.200351e-02
#> 1881 Line271 2 Env03 -5.558953e-01
#> 1882 Line271 2 Env13 -7.207499e-01
#> 1883 Line271 2 Env14 -9.680302e-02
#> 1884 Line271 2 Env15 -4.216795e-03
#> 1885 Line271 2 Env17 -4.943754e-01
#> 1886 Line272 2 Env01 -1.925368e-01
#> 1887 Line272 2 Env03 -2.203224e-01
#> 1888 Line272 2 Env13 1.764423e-01
#> 1889 Line272 2 Env14 -2.590971e-01
#> 1890 Line272 2 Env15 2.718020e-02
#> 1891 Line272 2 Env17 9.156067e-02
#> 1892 Line273 2 Env01 -3.316534e-01
#> 1893 Line273 2 Env03 8.200902e-02
#> 1894 Line273 2 Env13 2.322208e-01
#> 1895 Line273 2 Env14 -1.508264e-02
#> 1896 Line273 2 Env15 8.568691e-02
#> 1897 Line273 2 Env17 3.854434e-02
#> 1898 Line274 2 Env01 5.830695e-01
#> 1899 Line274 2 Env03 8.127557e-01
#> 1900 Line274 2 Env13 3.366364e-01
#> 1901 Line274 2 Env14 2.159136e-02
#> 1902 Line274 2 Env15 1.233299e-02
#> 1903 Line274 2 Env17 2.854201e-01
#> 1904 Line275 2 Env01 -4.621416e-02
#> 1905 Line275 2 Env03 -6.339065e-02
#> 1906 Line275 2 Env13 -5.580596e-02
#> 1907 Line275 2 Env14 3.332973e-02
#> 1908 Line275 2 Env15 7.188854e-02
#> 1909 Line275 2 Env17 -4.664836e-01
#> 1910 Line276 2 Env01 1.478776e-01
#> 1911 Line276 2 Env03 2.054434e-01
#> 1912 Line276 2 Env13 3.220799e-01
#> 1913 Line276 2 Env14 -4.433192e-02
#> 1914 Line276 2 Env15 4.154912e-01
#> 1915 Line276 2 Env17 1.115298e-01
#> 1916 Line277 2 Env01 3.794645e-01
#> 1917 Line277 2 Env03 4.885865e-01
#> 1918 Line277 2 Env13 -2.754475e-01
#> 1919 Line277 2 Env14 -1.249554e-01
#> 1920 Line277 2 Env15 -5.009634e-01
#> 1921 Line277 2 Env17 2.103828e-01
#> 1922 Line278 2 Env01 -1.325318e-01
#> 1923 Line278 2 Env03 -9.495757e-02
#> 1924 Line278 2 Env13 -1.000321e+00
#> 1925 Line278 2 Env14 6.118787e-02
#> 1926 Line278 2 Env15 -2.252674e-01
#> 1927 Line278 2 Env17 -3.898367e-01
#> 1928 Line279 2 Env01 -2.113390e-01
#> 1929 Line279 2 Env03 -3.101789e-01
#> 1930 Line279 2 Env13 -7.811116e-01
#> 1931 Line279 2 Env14 -3.304205e-01
#> 1932 Line279 2 Env15 -2.478741e-01
#> 1933 Line279 2 Env17 -6.018802e-01
#> 1934 Line280 2 Env01 1.376501e-01
#> 1935 Line280 2 Env03 -5.147382e-01
#> 1936 Line280 2 Env13 -1.809666e-01
#> 1937 Line280 2 Env14 2.057304e-01
#> 1938 Line280 2 Env15 3.527176e-01
#> 1939 Line280 2 Env17 2.111644e-01
#> 1940 Line281 2 Env01 3.741516e-01
#> 1941 Line281 2 Env03 -5.564553e-01
#> 1942 Line281 2 Env13 -7.196281e-02
#> 1943 Line281 2 Env14 -1.505942e-01
#> 1944 Line281 2 Env16 -2.343296e-02
#> 1945 Line281 2 Env17 -8.238709e-01
#> 1946 Line281 2 Env18 -6.832349e-02
#> 1947 Line281 2 Env19 -1.330408e-01
#> 1948 Line282 2 Env01 2.884403e-02
#> 1949 Line282 2 Env03 8.404547e-01
#> 1950 Line282 2 Env13 2.855110e-01
#> 1951 Line282 2 Env14 1.779381e-01
#> 1952 Line282 2 Env16 -3.978779e-01
#> 1953 Line282 2 Env17 6.885690e-01
#> 1954 Line282 2 Env18 5.461707e-01
#> 1955 Line282 2 Env19 6.957969e-02
#> 1956 Line283 2 Env01 -2.110549e-01
#> 1957 Line283 2 Env03 -4.042827e-01
#> 1958 Line283 2 Env13 -3.041514e-01
#> 1959 Line283 2 Env14 -1.407307e-01
#> 1960 Line283 2 Env17 -5.599724e-02
#> 1961 Line283 2 Env19 1.810569e-01
#> 1962 Line284 2 Env01 1.540181e-01
#> 1963 Line284 2 Env03 -7.438401e-01
#> 1964 Line284 2 Env14 1.358642e-01
#> 1965 Line284 2 Env15 1.210407e-01
#> 1966 Line284 2 Env16 5.501908e-02
#> 1967 Line284 2 Env17 2.257590e-01
#> 1968 Line284 2 Env19 3.844693e-01
#> 1969 Line285 2 Env01 -1.557966e-01
#> 1970 Line285 2 Env03 -3.538101e-01
#> 1971 Line285 2 Env14 -5.914302e-02
#> 1972 Line285 2 Env15 2.807380e-02
#> 1973 Line285 2 Env16 -4.821518e-02
#> 1974 Line285 2 Env17 -1.630672e-01
#> 1975 Line285 2 Env19 2.967811e-02
#> 1976 Line286 2 Env01 -8.839004e-02
#> 1977 Line286 2 Env03 -3.269897e-01
#> 1978 Line286 2 Env14 -2.314653e-01
#> 1979 Line286 2 Env15 2.153069e-01
#> 1980 Line286 2 Env16 -1.426278e-01
#> 1981 Line286 2 Env17 2.324586e-01
#> 1982 Line286 2 Env19 -4.081460e-02
#> 1983 Line287 2 Env01 -1.585809e-01
#> 1984 Line287 2 Env03 -4.795296e-01
#> 1985 Line287 2 Env14 -1.282425e-01
#> 1986 Line287 2 Env15 -8.785014e-02
#> 1987 Line287 2 Env16 -2.436988e-01
#> 1988 Line287 2 Env17 -4.188698e-01
#> 1989 Line287 2 Env19 1.121162e-01
#> 1990 Line288 2 Env01 9.137089e-02
#> 1991 Line288 2 Env03 4.654438e-02
#> 1992 Line288 2 Env14 -1.229609e-01
#> 1993 Line288 2 Env15 2.393062e-01
#> 1994 Line288 2 Env16 -2.760721e-01
#> 1995 Line288 2 Env17 1.948288e-01
#> 1996 Line288 2 Env19 4.355692e-02
#> 1997 Line289 2 Env01 -2.030283e-01
#> 1998 Line289 2 Env03 -4.651921e-03
#> 1999 Line289 2 Env14 -3.295913e-02
#> 2000 Line289 2 Env15 -1.357510e-01
#> 2001 Line289 2 Env16 -3.532462e-02
#> 2002 Line289 2 Env17 -1.207121e-01
#> 2003 Line289 2 Env19 -1.296600e-01
#> 2004 Line290 2 Env01 -2.129327e-01
#> 2005 Line290 2 Env03 3.033767e-01
#> 2006 Line290 2 Env14 -1.229639e-02
#> 2007 Line290 2 Env15 -3.404856e-01
#> 2008 Line290 2 Env16 -1.801440e-01
#> 2009 Line290 2 Env17 -2.415990e-01
#> 2010 Line290 2 Env19 -4.761081e-01
#> 2011 Line291 2 Env01 5.753756e-01
#> 2012 Line291 2 Env03 3.664237e-01
#> 2013 Line291 2 Env14 7.592714e-02
#> 2014 Line291 2 Env15 -3.816148e-01
#> 2015 Line291 2 Env16 2.583081e-01
#> 2016 Line291 2 Env17 4.008086e-01
#> 2017 Line291 2 Env19 -2.405178e-01
#> 2018 Line292 2 Env01 -2.864912e-02
#> 2019 Line292 2 Env03 5.350257e-01
#> 2020 Line292 2 Env14 2.119305e-01
#> 2021 Line292 2 Env15 1.263084e-01
#> 2022 Line292 2 Env16 5.439041e-01
#> 2023 Line292 2 Env17 3.146908e-01
#> 2024 Line292 2 Env19 8.153099e-02
#> 2025 Line293 2 Env01 -2.859651e-01
#> 2026 Line293 2 Env03 5.741729e-02
#> 2027 Line293 2 Env14 -1.841247e-01
#> 2028 Line293 2 Env15 -6.838158e-02
#> 2029 Line293 2 Env16 2.107163e-01
#> 2030 Line293 2 Env17 -1.100149e-01
#> 2031 Line293 2 Env19 2.378917e-01
#> 2032 Line294 2 Env01 -1.322297e-02
#> 2033 Line294 2 Env03 -1.962212e-01
#> 2034 Line294 2 Env14 4.889241e-01
#> 2035 Line294 2 Env15 -5.746779e-01
#> 2036 Line294 2 Env16 2.356577e-01
#> 2037 Line294 2 Env17 2.436499e-01
#> 2038 Line294 2 Env19 3.380243e-01
#> 2039 Line295 2 Env01 -7.818690e-02
#> 2040 Line295 2 Env03 1.578730e-01
#> 2041 Line295 2 Env14 6.974097e-02
#> 2042 Line295 2 Env15 1.601840e-01
#> 2043 Line295 2 Env16 2.677490e-01
#> 2044 Line295 2 Env17 -2.866189e-01
#> 2045 Line295 2 Env19 2.458618e-01
#> 2046 Line296 2 Env01 -1.118363e-01
#> 2047 Line296 2 Env03 -4.903006e-01
#> 2048 Line296 2 Env14 -1.013830e-03
#> 2049 Line296 2 Env15 2.841848e-01
#> 2050 Line296 2 Env16 -1.374589e-01
#> 2051 Line296 2 Env17 1.055786e-01
#> 2052 Line296 2 Env19 -1.731603e-01
#> 2053 Line297 2 Env01 -5.270419e-01
#> 2054 Line297 2 Env03 -8.939436e-01
#> 2055 Line297 2 Env14 -7.225666e-02
#> 2056 Line297 2 Env15 -3.527202e-02
#> 2057 Line297 2 Env16 -3.408954e-01
#> 2058 Line297 2 Env17 -4.673428e-01
#> 2059 Line297 2 Env19 -6.740483e-01
#> 2060 Line298 2 Env01 -6.635189e-02
#> 2061 Line298 2 Env03 -3.906218e-01
#> 2062 Line298 2 Env14 -1.526104e-01
#> 2063 Line298 2 Env15 9.776368e-02
#> 2064 Line298 2 Env16 -5.254924e-01
#> 2065 Line298 2 Env17 8.227016e-02
#> 2066 Line298 2 Env19 7.336422e-02
#> 2067 Line299 2 Env01 -3.906475e-02
#> 2068 Line299 2 Env03 -3.621599e-02
#> 2069 Line299 2 Env14 -2.103236e-01
#> 2070 Line299 2 Env15 1.268791e-01
#> 2071 Line299 2 Env16 -1.819377e-01
#> 2072 Line299 2 Env17 2.212435e-01
#> 2073 Line299 2 Env19 1.576452e-01
#> 2074 Line300 2 Env01 8.341428e-02
#> 2075 Line300 2 Env03 5.736488e-01
#> 2076 Line300 2 Env14 1.870451e-01
#> 2077 Line300 2 Env15 2.371966e-02
#> 2078 Line300 2 Env16 3.914744e-01
#> 2079 Line300 2 Env17 5.790559e-01
#> 2080 Line300 2 Env19 -6.480271e-01
#> 2081 Line301 2 Env01 2.595783e-02
#> 2082 Line301 2 Env03 -2.168853e-01
#> 2083 Line301 2 Env14 -1.270814e-02
#> 2084 Line301 2 Env15 8.351321e-02
#> 2085 Line301 2 Env16 -5.743096e-01
#> 2086 Line301 2 Env17 4.725446e-02
#> 2087 Line301 2 Env19 1.679075e-01
#> 2088 Line302 2 Env01 1.248574e-01
#> 2089 Line302 2 Env03 4.848684e-01
#> 2090 Line302 2 Env14 -1.214921e-01
#> 2091 Line302 2 Env15 -1.443730e-01
#> 2092 Line302 2 Env16 2.338221e-01
#> 2093 Line302 2 Env17 -1.216620e-01
#> 2094 Line302 2 Env19 2.911073e-01
#> 2095 Line303 2 Env01 -1.114307e-01
#> 2096 Line303 2 Env03 -3.938204e-02
#> 2097 Line303 2 Env14 1.397078e-01
#> 2098 Line303 2 Env15 -1.304444e-01
#> 2099 Line303 2 Env16 4.487811e-01
#> 2100 Line303 2 Env17 3.151428e-01
#> 2101 Line303 2 Env19 -5.171518e-02
#> 2102 Line304 2 Env01 1.861769e-01
#> 2103 Line304 2 Env03 6.716858e-01
#> 2104 Line304 2 Env14 -4.845393e-02
#> 2105 Line304 2 Env15 8.974345e-02
#> 2106 Line304 2 Env16 5.250094e-01
#> 2107 Line304 2 Env17 7.967048e-02
#> 2108 Line304 2 Env19 -1.639306e-01
#> 2109 Line305 2 Env01 2.156102e-01
#> 2110 Line305 2 Env03 1.321167e-01
#> 2111 Line305 2 Env14 1.280985e-01
#> 2112 Line305 2 Env15 -1.838339e-01
#> 2113 Line305 2 Env16 -2.978009e-02
#> 2114 Line305 2 Env17 3.407449e-01
#> 2115 Line305 2 Env19 2.124067e-01
#> 2116 Line306 2 Env01 2.539438e-01
#> 2117 Line306 2 Env03 -3.824001e-01
#> 2118 Line306 2 Env14 5.433524e-02
#> 2119 Line306 2 Env15 -1.481983e-01
#> 2120 Line306 2 Env16 2.845599e-01
#> 2121 Line306 2 Env17 6.121164e-02
#> 2122 Line306 2 Env19 6.324468e-01
#> 2123 Line307 2 Env01 -2.151204e-01
#> 2124 Line307 2 Env03 -1.726967e-01
#> 2125 Line307 2 Env14 7.321690e-02
#> 2126 Line307 2 Env15 8.771412e-02
#> 2127 Line307 2 Env16 3.825994e-02
#> 2128 Line307 2 Env17 -4.782022e-01
#> 2129 Line307 2 Env19 3.454864e-02
#> 2130 Line308 2 Env01 2.740687e-02
#> 2131 Line308 2 Env03 2.697362e-01
#> 2132 Line308 2 Env14 9.940483e-02
#> 2133 Line308 2 Env15 3.817609e-01
#> 2134 Line308 2 Env16 -4.857955e-01
#> 2135 Line308 2 Env17 2.716753e-01
#> 2136 Line308 2 Env19 2.474284e-02
#> 2137 Line309 2 Env01 4.247258e-01
#> 2138 Line309 2 Env03 5.978517e-01
#> 2139 Line309 2 Env14 8.029432e-02
#> 2140 Line309 2 Env15 1.863202e-01
#> 2141 Line309 2 Env16 -5.434781e-02
#> 2142 Line309 2 Env17 -1.538375e-01
#> 2143 Line309 2 Env19 -4.662646e-01
#> 2144 Line310 2 Env01 -1.496475e-01
#> 2145 Line310 2 Env03 -8.104874e-02
#> 2146 Line310 2 Env14 -1.718677e-01
#> 2147 Line310 2 Env15 -1.483845e-01
#> 2148 Line310 2 Env16 -1.470727e-01
#> 2149 Line310 2 Env17 1.050733e-01
#> 2150 Line310 2 Env19 4.634107e-01
#> 2151 Line311 2 Env01 -2.618140e-01
#> 2152 Line311 2 Env03 -4.410006e-01
#> 2153 Line311 2 Env14 -1.484945e-01
#> 2154 Line311 2 Env15 5.471308e-02
#> 2155 Line311 2 Env16 4.415424e-02
#> 2156 Line311 2 Env17 -1.629322e-01
#> 2157 Line311 2 Env19 -2.879853e-01
#> 2158 Line312 2 Env01 6.404636e-01
#> 2159 Line312 2 Env03 2.952286e-01
#> 2160 Line312 2 Env14 2.271015e-01
#> 2161 Line312 2 Env15 1.769363e-01
#> 2162 Line312 2 Env17 4.733576e-01
#> 2163 Line312 2 Env19 1.849163e-01
#> 2164 Line313 2 Env01 3.272436e-01
#> 2165 Line313 2 Env03 3.915287e-01
#> 2166 Line313 2 Env14 1.694977e-01
#> 2167 Line313 2 Env16 4.523845e-01
#> 2168 Line313 2 Env17 1.593596e-01
#> 2169 Line313 2 Env19 5.612549e-01
#> 2170 Line314 2 Env01 -1.985210e-01
#> 2171 Line314 2 Env13 -5.315940e-01
#> 2172 Line314 2 Env14 -1.974329e-01
#> 2173 Line314 2 Env15 -1.390258e-01
#> 2174 Line314 2 Env16 4.994091e-02
#> 2175 Line314 2 Env17 -3.995062e-01
#> 2176 Line315 2 Env01 2.208078e-01
#> 2177 Line315 2 Env13 6.779739e-02
#> 2178 Line315 2 Env14 -4.644838e-02
#> 2179 Line315 2 Env15 1.839037e-01
#> 2180 Line315 2 Env16 2.447547e-01
#> 2181 Line315 2 Env17 7.924170e-01
#> 2182 Line316 2 Env01 -1.384025e-01
#> 2183 Line316 2 Env13 -6.424777e-01
#> 2184 Line316 2 Env14 2.950373e-01
#> 2185 Line316 2 Env15 3.292800e-01
#> 2186 Line316 2 Env16 3.594590e-01
#> 2187 Line316 2 Env17 3.893882e-01
#> 2188 Line317 2 Env01 4.507949e-01
#> 2189 Line317 2 Env13 8.950740e-01
#> 2190 Line317 2 Env14 2.313828e-01
#> 2191 Line317 2 Env15 1.716246e-01
#> 2192 Line317 2 Env16 1.503029e-01
#> 2193 Line317 2 Env17 2.646700e-01
#> 2194 Line318 2 Env01 -6.435250e-01
#> 2195 Line318 2 Env13 -3.374280e-01
#> 2196 Line318 2 Env14 -9.021061e-02
#> 2197 Line318 2 Env15 -1.612507e-01
#> 2198 Line318 2 Env16 -5.914584e-01
#> 2199 Line318 2 Env17 -1.623940e-01
#> 2200 Line319 2 Env01 -3.704522e-01
#> 2201 Line319 2 Env13 -5.774381e-01
#> 2202 Line319 2 Env14 -2.699299e-01
#> 2203 Line319 2 Env15 5.369437e-02
#> 2204 Line319 2 Env16 -3.924145e-01
#> 2205 Line319 2 Env17 -6.961020e-01
#> 2206 Line320 2 Env01 2.800871e-01
#> 2207 Line320 2 Env13 1.126066e+00
#> 2208 Line320 2 Env14 -2.338195e-02
#> 2209 Line320 2 Env15 1.451426e-01
#> 2210 Line320 2 Env16 6.980502e-01
#> 2211 Line320 2 Env17 2.141656e-01
#> 2212 Line321 2 Env01 4.227273e-01
#> 2213 Line321 2 Env13 8.870950e-01
#> 2214 Line321 2 Env14 2.207536e-01
#> 2215 Line321 2 Env15 1.888562e-01
#> 2216 Line321 2 Env17 4.893749e-01
#> 2217 Line321 2 Env19 3.922491e-01
#> 2218 Line322 2 Env01 -6.876738e-01
#> 2219 Line322 2 Env13 -7.548471e-01
#> 2220 Line322 2 Env14 -1.545089e-01
#> 2221 Line322 2 Env15 -2.278969e-01
#> 2222 Line322 2 Env17 -2.180805e-01
#> 2223 Line322 2 Env19 -4.069055e-01
#> 2224 Line323 2 Env01 -1.520785e-01
#> 2225 Line323 2 Env13 -1.868143e-01
#> 2226 Line323 2 Env14 3.302006e-02
#> 2227 Line323 2 Env15 -2.728589e-01
#> 2228 Line323 2 Env17 -6.672823e-01
#> 2229 Line323 2 Env19 -1.137268e+00
#> 2230 Line324 2 Env01 5.916389e-01
#> 2231 Line324 2 Env13 1.492535e+00
#> 2232 Line324 2 Env14 1.788862e-02
#> 2233 Line324 2 Env15 4.631992e-17
#> 2234 Line324 2 Env17 3.536841e-01
#> 2235 Line324 2 Env19 5.682969e-01
#> 2236 Line325 2 Env01 2.733314e-01
#> 2237 Line325 2 Env13 8.853116e-01
#> 2238 Line325 2 Env14 -9.098100e-02
#> 2239 Line325 2 Env15 -2.789621e-01
#> 2240 Line325 2 Env17 4.230374e-02
#> 2241 Line325 2 Env19 -6.062992e-03
#> 2242 Line326 2 Env04 7.238699e-03
#> 2243 Line326 2 Env06 -6.440223e-01
#> 2244 Line326 2 Env07 2.967766e-01
#> 2245 Line326 2 Env08 -1.479785e-01
#> 2246 Line326 2 Env09 1.662566e-01
#> 2247 Line326 2 Env10 5.223782e-02
#> 2248 Line326 2 Env11 -2.633404e-02
#> 2249 Line326 2 Env17 3.052949e-01
#> 2250 Line327 2 Env04 -3.969636e-01
#> 2251 Line327 2 Env06 -1.055973e+00
#> 2252 Line327 2 Env07 7.014178e-01
#> 2253 Line327 2 Env08 -1.981424e-01
#> 2254 Line327 2 Env09 1.359013e+00
#> 2255 Line327 2 Env10 1.407132e+00
#> 2256 Line327 2 Env11 6.675707e-01
#> 2257 Line327 2 Env17 -3.643126e-01
#> 2258 Line328 2 Env06 -1.344343e+00
#> 2259 Line328 2 Env07 4.818870e-02
#> 2260 Line328 2 Env08 -1.043253e-01
#> 2261 Line328 2 Env09 -6.035533e-02
#> 2262 Line328 2 Env10 3.540719e-01
#> 2263 Line328 2 Env11 -1.410390e-01
#> 2264 Line328 2 Env18 -2.283122e-01
#> 2265 Line329 2 Env06 1.069823e+00
#> 2266 Line329 2 Env07 -5.233081e-02
#> 2267 Line329 2 Env08 -8.685466e-02
#> 2268 Line329 2 Env09 2.562330e-01
#> 2269 Line329 2 Env10 2.306587e-01
#> 2270 Line329 2 Env11 -3.548485e-02
#> 2271 Line329 2 Env18 3.988868e-01
#> 2272 Line330 2 Env06 -1.276760e+00
#> 2273 Line330 2 Env07 -2.167624e-02
#> 2274 Line330 2 Env08 1.476698e-01
#> 2275 Line330 2 Env09 -3.753202e-01
#> 2276 Line330 2 Env10 -3.449780e-01
#> 2277 Line330 2 Env11 3.447859e-01
#> 2278 Line330 2 Env18 -4.685775e-01
#> 2279 Line331 2 Env06 6.468019e-01
#> 2280 Line331 2 Env07 -3.325827e-03
#> 2281 Line331 2 Env08 -9.208609e-02
#> 2282 Line331 2 Env09 -2.947177e-02
#> 2283 Line331 2 Env10 -1.168406e+00
#> 2284 Line331 2 Env11 -3.616989e-01
#> 2285 Line331 2 Env18 -2.504839e-01
#> 2286 Line332 2 Env06 -3.202945e-01
#> 2287 Line332 2 Env07 -3.476602e-01
#> 2288 Line332 2 Env08 -6.652198e-01
#> 2289 Line332 2 Env09 -7.363640e-01
#> 2290 Line332 2 Env10 -5.755621e-02
#> 2291 Line332 2 Env11 -2.854961e-01
#> 2292 Line332 2 Env18 -8.322585e-01
#> 2293 Line333 2 Env06 2.095771e-01
#> 2294 Line333 2 Env07 3.254175e-01
#> 2295 Line333 2 Env08 3.370294e-02
#> 2296 Line333 2 Env09 8.705330e-01
#> 2297 Line333 2 Env10 1.128955e+00
#> 2298 Line333 2 Env11 1.108937e-01
#> 2299 Line333 2 Env18 9.971069e-02
#> 2300 Line334 2 Env06 6.408216e-01
#> 2301 Line334 2 Env07 1.443505e-01
#> 2302 Line334 2 Env08 5.482507e-01
#> 2303 Line334 2 Env09 8.805040e-01
#> 2304 Line334 2 Env10 -6.047669e-02
#> 2305 Line334 2 Env11 5.622495e-02
#> 2306 Line334 2 Env18 4.612793e-01
#> 2307 Line335 2 Env06 -8.360598e-01
#> 2308 Line335 2 Env07 -1.628363e-02
#> 2309 Line335 2 Env08 4.905452e-02
#> 2310 Line335 2 Env09 -2.758470e-01
#> 2311 Line335 2 Env10 -4.479334e-02
#> 2312 Line335 2 Env11 -7.577825e-02
#> 2313 Line335 2 Env18 -2.975197e-01
#> 2314 Line336 2 Env06 1.917925e+00
#> 2315 Line336 2 Env07 4.078332e-01
#> 2316 Line336 2 Env08 1.563599e-01
#> 2317 Line336 2 Env09 -6.982288e-02
#> 2318 Line336 2 Env10 1.020332e-01
#> 2319 Line336 2 Env11 6.728387e-02
#> 2320 Line336 2 Env18 1.127254e+00
#> 2321 Line337 2 Env06 5.915517e-01
#> 2322 Line337 2 Env07 -5.419604e-02
#> 2323 Line337 2 Env08 -2.762271e-01
#> 2324 Line337 2 Env09 -2.086621e-01
#> 2325 Line337 2 Env10 -2.332951e-03
#> 2326 Line337 2 Env11 1.050287e-01
#> 2327 Line337 2 Env18 7.742501e-01
#> 2328 Line338 2 Env06 -9.415053e-01
#> 2329 Line338 2 Env07 -1.892181e-01
#> 2330 Line338 2 Env08 -7.784959e-02
#> 2331 Line338 2 Env09 1.539306e-01
#> 2332 Line338 2 Env10 -1.762128e-01
#> 2333 Line338 2 Env11 1.836431e-01
#> 2334 Line338 2 Env18 -5.309592e-01
#> 2335 Line339 2 Env06 -1.197035e+00
#> 2336 Line339 2 Env07 -8.088936e-01
#> 2337 Line339 2 Env08 4.795450e-02
#> 2338 Line339 2 Env09 -4.982232e-01
#> 2339 Line339 2 Env10 -9.030675e-01
#> 2340 Line339 2 Env11 -1.545138e-01
#> 2341 Line340 2 Env06 2.460384e-01
#> 2342 Line340 2 Env07 3.387312e-01
#> 2343 Line340 2 Env08 -4.669448e-01
#> 2344 Line340 2 Env09 -1.315835e+00
#> 2345 Line340 2 Env10 -4.018575e-01
#> 2346 Line340 2 Env11 -2.661620e-01
#> 2347 Line341 2 Env06 8.383141e-02
#> 2348 Line341 2 Env07 -6.785362e-01
#> 2349 Line341 2 Env08 1.116425e-01
#> 2350 Line341 2 Env09 -3.787661e-01
#> 2351 Line341 2 Env10 -4.659090e-01
#> 2352 Line341 2 Env11 1.999624e-01
#> 2353 Line342 2 Env06 -1.629471e+00
#> 2354 Line342 2 Env07 5.307093e-01
#> 2355 Line342 2 Env08 1.249060e-01
#> 2356 Line342 2 Env09 -5.616413e-01
#> 2357 Line342 2 Env10 -6.091386e-02
#> 2358 Line342 2 Env11 3.949322e-01
#> 2359 Line343 2 Env06 -1.008642e+00
#> 2360 Line343 2 Env07 -8.267619e-03
#> 2361 Line343 2 Env08 -1.421081e-01
#> 2362 Line343 2 Env09 -8.107637e-02
#> 2363 Line343 2 Env10 -4.549412e-02
#> 2364 Line343 2 Env11 -8.615661e-03
#> 2365 Line344 2 Env06 -4.529395e-01
#> 2366 Line344 2 Env07 2.628705e-02
#> 2367 Line344 2 Env08 -5.373780e-01
#> 2368 Line344 2 Env09 -2.038444e-01
#> 2369 Line344 2 Env10 -4.358523e-01
#> 2370 Line344 2 Env11 -4.794832e-02
#> 2371 Line345 2 Env06 -6.790435e-01
#> 2372 Line345 2 Env07 5.000112e-01
#> 2373 Line345 2 Env08 1.629949e-01
#> 2374 Line345 2 Env09 -2.798220e-01
#> 2375 Line345 2 Env10 1.511130e-01
#> 2376 Line345 2 Env11 -3.109827e-01
#> 2377 Line346 2 Env06 -1.697458e+00
#> 2378 Line346 2 Env07 4.854449e-01
#> 2379 Line346 2 Env08 1.683855e-01
#> 2380 Line346 2 Env09 1.536970e-01
#> 2381 Line346 2 Env10 1.010354e-01
#> 2382 Line346 2 Env11 -3.286688e-01
#> 2383 Line347 2 Env06 -1.083312e+00
#> 2384 Line347 2 Env07 -1.063103e+00
#> 2385 Line347 2 Env08 8.662734e-02
#> 2386 Line347 2 Env09 -1.107742e-01
#> 2387 Line347 2 Env10 3.633401e-01
#> 2388 Line347 2 Env11 -5.442246e-01
#> 2389 Line348 2 Env06 1.915284e+00
#> 2390 Line348 2 Env07 4.062632e-01
#> 2391 Line348 2 Env08 1.607619e-01
#> 2392 Line348 2 Env09 2.682015e-01
#> 2393 Line348 2 Env10 -5.729739e-03
#> 2394 Line348 2 Env11 -2.924368e-02
#> 2395 Line349 2 Env06 -4.554604e-01
#> 2396 Line349 2 Env07 -1.111410e-02
#> 2397 Line349 2 Env08 2.806957e-01
#> 2398 Line349 2 Env09 -3.472441e-01
#> 2399 Line349 2 Env10 3.713798e-01
#> 2400 Line349 2 Env11 3.995594e-01
#> 2401 Line350 2 Env06 1.131496e-02
#> 2402 Line350 2 Env07 -3.783122e-01
#> 2403 Line350 2 Env08 -2.603968e-01
#> 2404 Line350 2 Env09 -4.138635e-01
#> 2405 Line350 2 Env10 -2.484218e+00
#> 2406 Line350 2 Env11 -2.504295e-01
#> 2407 Line351 2 Env06 1.594229e+00
#> 2408 Line351 2 Env07 -8.114408e-01
#> 2409 Line351 2 Env08 2.893113e-01
#> 2410 Line351 2 Env09 3.597941e-01
#> 2411 Line351 2 Env10 2.447457e-01
#> 2412 Line351 2 Env11 -7.022386e-02
#> 2413 Line352 2 Env06 -1.413651e+00
#> 2414 Line352 2 Env07 -3.991332e-01
#> 2415 Line352 2 Env08 -4.779826e-02
#> 2416 Line352 2 Env09 4.863930e-01
#> 2417 Line352 2 Env10 -6.211797e-02
#> 2418 Line352 2 Env11 4.221196e-01
#> 2419 Line353 2 Env06 -1.274717e-02
#> 2420 Line353 2 Env07 3.795312e-03
#> 2421 Line353 2 Env08 -2.452752e-01
#> 2422 Line353 2 Env09 9.271376e-01
#> 2423 Line353 2 Env10 4.862836e-01
#> 2424 Line353 2 Env11 2.495647e-01
#> 2425 Line354 2 Env06 4.284322e-01
#> 2426 Line354 2 Env07 2.327194e-01
#> 2427 Line354 2 Env08 2.776391e-01
#> 2428 Line354 2 Env09 4.247280e-01
#> 2429 Line354 2 Env10 -8.813048e-01
#> 2430 Line354 2 Env11 -6.446606e-03
#> 2431 Line355 2 Env06 -1.339851e+00
#> 2432 Line355 2 Env07 5.314221e-01
#> 2433 Line355 2 Env08 -8.635959e-02
#> 2434 Line355 2 Env09 1.632193e-01
#> 2435 Line355 2 Env10 8.786501e-02
#> 2436 Line355 2 Env11 1.184041e-01
#> 2437 Line356 2 Env06 1.095573e+00
#> 2438 Line356 2 Env07 -7.901420e-01
#> 2439 Line356 2 Env08 -3.584173e-01
#> 2440 Line356 2 Env09 5.068969e-01
#> 2441 Line356 2 Env10 5.185113e-01
#> 2442 Line356 2 Env11 4.800746e-01
#> 2443 Line357 2 Env06 -8.197411e-02
#> 2444 Line357 2 Env07 3.152084e-01
#> 2445 Line357 2 Env08 1.734825e-01
#> 2446 Line357 2 Env09 4.094851e-01
#> 2447 Line357 2 Env10 3.157697e-01
#> 2448 Line357 2 Env11 3.319040e-01
#> 2449 Line358 2 Env06 -1.994062e-01
#> 2450 Line358 2 Env07 3.898333e-01
#> 2451 Line358 2 Env08 1.568979e-01
#> 2452 Line358 2 Env09 6.615171e-01
#> 2453 Line358 2 Env10 6.065771e-01
#> 2454 Line358 2 Env11 3.091358e-01
#> 2455 Line359 2 Env06 -3.156183e-01
#> 2456 Line359 2 Env07 5.851933e-01
#> 2457 Line359 2 Env08 -5.736751e-01
#> 2458 Line359 2 Env09 -3.473098e-02
#> 2459 Line359 2 Env10 -6.177603e-01
#> 2460 Line359 2 Env11 -1.640003e-01
#> 2461 Line360 2 Env06 4.461143e-01
#> 2462 Line360 2 Env07 -5.297929e-01
#> 2463 Line360 2 Env08 -6.920009e-03
#> 2464 Line360 2 Env09 -1.915494e-01
#> 2465 Line360 2 Env10 -3.054309e-01
#> 2466 Line360 2 Env11 -1.802927e-01
#> 2467 Line361 2 Env06 2.399545e-01
#> 2468 Line361 2 Env07 -1.051956e+00
#> 2469 Line361 2 Env08 -1.090570e-01
#> 2470 Line361 2 Env09 -2.621821e-01
#> 2471 Line361 2 Env10 3.496478e-02
#> 2472 Line361 2 Env11 -1.732958e-02
#> 2473 Line362 2 Env06 -3.532349e-01
#> 2474 Line362 2 Env07 9.156602e-01
#> 2475 Line362 2 Env08 1.234537e-01
#> 2476 Line362 2 Env09 -6.098729e-01
#> 2477 Line362 2 Env10 4.134085e-01
#> 2478 Line362 2 Env11 3.879488e-01
#> 2479 Line363 2 Env06 6.277768e-01
#> 2480 Line363 2 Env07 3.228265e-01
#> 2481 Line363 2 Env08 2.301263e-01
#> 2482 Line363 2 Env09 8.340035e-01
#> 2483 Line363 2 Env10 9.561636e-01
#> 2484 Line363 2 Env11 -6.629005e-01
#> 2485 Line364 2 Env06 -9.783754e-02
#> 2486 Line364 2 Env07 7.894710e-01
#> 2487 Line364 2 Env08 3.201295e-01
#> 2488 Line364 2 Env09 7.849766e-01
#> 2489 Line364 2 Env10 2.111987e-01
#> 2490 Line364 2 Env11 2.189523e-01
#> 2491 Line365 2 Env06 -6.110528e-01
#> 2492 Line365 2 Env07 -6.200992e-01
#> 2493 Line365 2 Env08 1.243569e-01
#> 2494 Line365 2 Env09 -7.884977e-01
#> 2495 Line365 2 Env10 -6.614098e-01
#> 2496 Line365 2 Env11 -6.841862e-02
#> 2497 Line366 2 Env06 1.373442e+00
#> 2498 Line366 2 Env07 4.615354e-01
#> 2499 Line366 2 Env08 -2.704743e-01
#> 2500 Line366 2 Env09 -3.572589e-01
#> 2501 Line366 2 Env10 1.867136e-01
#> 2502 Line366 2 Env11 3.944348e-02
#> 2503 Line367 2 Env06 -1.450831e+00
#> 2504 Line367 2 Env07 -3.221902e-01
#> 2505 Line367 2 Env08 2.832492e-01
#> 2506 Line367 2 Env09 4.709056e-01
#> 2507 Line367 2 Env10 4.873231e-01
#> 2508 Line367 2 Env11 -2.342143e-01
#> 2509 Line368 2 Env06 6.867258e-01
#> 2510 Line368 2 Env07 -3.822395e-01
#> 2511 Line368 2 Env08 2.201003e-01
#> 2512 Line368 2 Env09 -1.092692e-01
#> 2513 Line368 2 Env10 2.470503e-01
#> 2514 Line368 2 Env11 -3.871352e-01
#> 2515 Line369 2 Env06 -1.392186e+00
#> 2516 Line369 2 Env07 3.775742e-01
#> 2517 Line369 2 Env08 -3.604910e-01
#> 2518 Line369 2 Env09 -2.887970e-01
#> 2519 Line369 2 Env10 -3.032737e-01
#> 2520 Line369 2 Env11 -3.849737e-01
#> 2521 Line370 2 Env06 1.109000e+00
#> 2522 Line370 2 Env07 -1.821592e-01
#> 2523 Line370 2 Env08 -5.202360e-02
#> 2524 Line370 2 Env09 -4.886007e-01
#> 2525 Line370 2 Env10 -2.422820e-01
#> 2526 Line370 2 Env11 -2.978911e-01
#> 2527 Line371 2 Env06 5.565629e-01
#> 2528 Line371 2 Env07 -2.678043e-01
#> 2529 Line371 2 Env08 -1.425705e-01
#> 2530 Line371 2 Env09 -1.442481e-01
#> 2531 Line371 2 Env10 -3.058004e-01
#> 2532 Line371 2 Env11 4.572947e-02
#> 2533 Line372 2 Env06 8.550167e-01
#> 2534 Line372 2 Env07 2.861723e-01
#> 2535 Line372 2 Env08 2.661504e-01
#> 2536 Line372 2 Env09 2.255081e-01
#> 2537 Line372 2 Env10 1.250508e-01
#> 2538 Line372 2 Env11 6.182463e-01
#> 2539 Line373 2 Env06 8.137756e-01
#> 2540 Line373 2 Env07 -7.854404e-01
#> 2541 Line373 2 Env08 -1.905723e-01
#> 2542 Line373 2 Env09 -6.936324e-02
#> 2543 Line373 2 Env10 -3.427813e-01
#> 2544 Line373 2 Env11 -3.802869e-01
#> 2545 Line374 2 Env06 -2.354694e-01
#> 2546 Line374 2 Env07 -4.315335e-01
#> 2547 Line374 2 Env08 2.912438e-01
#> 2548 Line374 2 Env09 2.196560e-01
#> 2549 Line374 2 Env10 6.161051e-03
#> 2550 Line374 2 Env11 -3.213326e-02
#> 2551 Line375 2 Env06 -1.953684e+00
#> 2552 Line375 2 Env07 4.963116e-01
#> 2553 Line375 2 Env08 4.599400e-01
#> 2554 Line375 2 Env09 7.041611e-01
#> 2555 Line375 2 Env10 4.471010e-01
#> 2556 Line375 2 Env11 1.354030e-01
#> 2557 Line376 2 Env06 3.996265e-02
#> 2558 Line376 2 Env07 -1.019513e-01
#> 2559 Line376 2 Env08 -1.794249e-01
#> 2560 Line376 2 Env09 -3.489443e-01
#> 2561 Line376 2 Env10 -7.259984e-01
#> 2562 Line376 2 Env11 5.593338e-03
#> 2563 Line377 2 Env06 -8.859380e-01
#> 2564 Line377 2 Env07 -1.168359e-01
#> 2565 Line377 2 Env08 6.434157e-01
#> 2566 Line377 2 Env09 6.230686e-01
#> 2567 Line377 2 Env10 9.695693e-01
#> 2568 Line377 2 Env11 1.251515e-01
#> 2569 Line378 2 Env06 9.977574e-02
#> 2570 Line378 2 Env07 2.317231e-01
#> 2571 Line378 2 Env08 -7.853117e-02
#> 2572 Line378 2 Env09 1.574182e-03
#> 2573 Line378 2 Env10 -9.074902e-02
#> 2574 Line378 2 Env11 -2.533379e-01
#> 2575 Line379 2 Env06 8.833607e-02
#> 2576 Line379 2 Env07 -2.021121e-01
#> 2577 Line379 2 Env08 -2.003260e-01
#> 2578 Line379 2 Env09 -4.433645e-01
#> 2579 Line379 2 Env10 2.825156e-01
#> 2580 Line379 2 Env11 -9.847857e-02
#> 2581 Line380 2 Env06 -5.512268e-01
#> 2582 Line380 2 Env07 7.241490e-02
#> 2583 Line380 2 Env08 3.687168e-02
#> 2584 Line380 2 Env09 -3.672045e-01
#> 2585 Line380 2 Env10 4.268752e-01
#> 2586 Line380 2 Env11 -1.531435e-01
#> 2587 Line381 2 Env06 7.649265e-01
#> 2588 Line381 2 Env07 -9.607629e-02
#> 2589 Line381 2 Env08 9.845805e-02
#> 2590 Line381 2 Env09 5.775623e-01
#> 2591 Line381 2 Env10 1.160182e-01
#> 2592 Line381 2 Env11 -1.111643e-01
#> 2593 Line382 2 Env06 1.960162e+00
#> 2594 Line382 2 Env07 -3.808594e-01
#> 2595 Line382 2 Env08 -3.178445e-01
#> 2596 Line382 2 Env09 -1.598307e-03
#> 2597 Line382 2 Env10 -5.432731e-01
#> 2598 Line382 2 Env11 -2.170791e-01
#> 2599 Line383 2 Env06 2.929750e-01
#> 2600 Line383 2 Env07 7.884789e-02
#> 2601 Line383 2 Env08 -3.782946e-01
#> 2602 Line383 2 Env09 6.511053e-02
#> 2603 Line383 2 Env10 -3.649371e-01
#> 2604 Line383 2 Env11 -6.840964e-02
#> 2605 Line384 2 Env06 5.894418e-01
#> 2606 Line384 2 Env07 -1.335872e-01
#> 2607 Line384 2 Env08 1.064429e-01
#> 2608 Line384 2 Env09 -1.278706e-01
#> 2609 Line384 2 Env10 -6.532269e-01
#> 2610 Line384 2 Env11 -1.264708e-01
#> 2611 Line385 2 Env06 -1.437433e+00
#> 2612 Line385 2 Env07 -4.918166e-02
#> 2613 Line385 2 Env08 -6.571108e-02
#> 2614 Line385 2 Env09 -2.406969e-01
#> 2615 Line385 2 Env10 1.620069e-01
#> 2616 Line385 2 Env11 3.721278e-01
#> 2617 Line386 2 Env06 -2.878880e-01
#> 2618 Line386 2 Env07 1.612092e-01
#> 2619 Line386 2 Env08 1.097709e-02
#> 2620 Line386 2 Env09 -5.824126e-02
#> 2621 Line386 2 Env10 8.497259e-01
#> 2622 Line386 2 Env11 4.523144e-01
#> 2623 Line387 2 Env06 2.466426e+00
#> 2624 Line387 2 Env07 1.746728e-01
#> 2625 Line387 2 Env08 2.281158e-01
#> 2626 Line387 2 Env09 2.391019e-01
#> 2627 Line387 2 Env10 8.043612e-01
#> 2628 Line387 2 Env11 1.125852e-01
#> 2629 Line388 2 Env06 7.798935e-01
#> 2630 Line388 2 Env07 -1.290432e-02
#> 2631 Line388 2 Env08 5.241166e-01
#> 2632 Line388 2 Env09 8.354783e-02
#> 2633 Line388 2 Env10 -3.969744e-01
#> 2634 Line388 2 Env11 1.355886e-01
#> 2635 Line389 2 Env06 -1.276745e-01
#> 2636 Line389 2 Env07 -1.033102e-01
#> 2637 Line389 2 Env08 6.543290e-02
#> 2638 Line389 2 Env09 -7.073484e-01
#> 2639 Line389 2 Env10 -2.073725e-03
#> 2640 Line389 2 Env11 1.810784e-01
#> 2641 Line390 2 Env06 9.956215e-02
#> 2642 Line390 2 Env07 -1.347328e-01
#> 2643 Line390 2 Env08 -1.199756e-01
#> 2644 Line390 2 Env09 -7.175639e-01
#> 2645 Line390 2 Env10 -7.423625e-02
#> 2646 Line390 2 Env11 -2.732890e-01
#> 2647 Line391 2 Env06 -1.183612e+00
#> 2648 Line391 2 Env07 -2.753318e-01
#> 2649 Line391 2 Env08 -4.369309e-01
#> 2650 Line391 2 Env09 -1.829191e-01
#> 2651 Line391 2 Env10 -2.810829e-01
#> 2652 Line391 2 Env11 2.118197e-01
#> 2653 Line392 2 Env06 3.369667e-01
#> 2654 Line392 2 Env07 -5.094066e-01
#> 2655 Line392 2 Env08 -5.763644e-02
#> 2656 Line392 2 Env09 -4.294158e-02
#> 2657 Line392 2 Env10 2.580760e-01
#> 2658 Line392 2 Env11 -2.329522e-01
#> 2659 Line393 2 Env06 1.450594e+00
#> 2660 Line393 2 Env07 -3.091468e-02
#> 2661 Line393 2 Env08 -2.513609e-01
#> 2662 Line393 2 Env09 -5.404714e-01
#> 2663 Line393 2 Env10 -3.579951e-01
#> 2664 Line393 2 Env11 -6.477576e-01
#> 2665 Line394 2 Env06 -3.824408e-01
#> 2666 Line394 2 Env07 -2.829430e-01
#> 2667 Line394 2 Env08 3.188926e-01
#> 2668 Line394 2 Env09 4.146203e-01
#> 2669 Line394 2 Env10 6.356750e-02
#> 2670 Line394 2 Env11 8.349102e-02
#> 2671 Line395 2 Env06 -7.340898e-01
#> 2672 Line395 2 Env07 9.795995e-02
#> 2673 Line395 2 Env08 -1.325750e-01
#> 2674 Line395 2 Env09 1.716015e-01
#> 2675 Line395 2 Env10 2.111273e-01
#> 2676 Line395 2 Env11 -2.549268e-01
#> 2677 Line396 2 Env07 2.988379e-01
#> 2678 Line396 2 Env08 -2.535963e-01
#> 2679 Line396 2 Env09 -2.819336e-01
#> 2680 Line396 2 Env10 -2.483014e-02
#> 2681 Line396 2 Env11 -1.777017e-01
#> 2682 Line396 2 Env18 -3.029814e-01
#> 2683 Line397 2 Env07 2.687522e-01
#> 2684 Line397 2 Env08 1.804150e-01
#> 2685 Line397 2 Env09 4.868278e-02
#> 2686 Line397 2 Env10 4.885843e-01
#> 2687 Line397 2 Env11 3.463978e-01
#> 2688 Line397 2 Env18 -7.891377e-02
#> 2689 Line398 2 Env07 5.151326e-01
#> 2690 Line398 2 Env08 2.986898e-01
#> 2691 Line398 2 Env09 -2.527645e-01
#> 2692 Line398 2 Env10 2.776706e-01
#> 2693 Line398 2 Env11 1.414579e-01
#> 2694 Line398 2 Env18 3.975754e-01
#> 2695 Line399 2 Env07 -6.635564e-02
#> 2696 Line399 2 Env08 -1.847489e-01
#> 2697 Line399 2 Env09 3.372151e-01
#> 2698 Line399 2 Env10 6.569167e-01
#> 2699 Line399 2 Env11 -3.956016e-02
#> 2700 Line399 2 Env18 2.221789e-01
#> 2701 Line400 2 Env07 1.683424e-01
#> 2702 Line400 2 Env08 6.534910e-02
#> 2703 Line400 2 Env09 -2.233223e-01
#> 2704 Line400 2 Env10 2.540777e-01
#> 2705 Line400 2 Env11 -1.366348e-01
#> 2706 Line400 2 Env18 -4.595934e-01
#> 2707 Line401 2 Env07 2.624717e-01
#> 2708 Line401 2 Env08 -4.190654e-01
#> 2709 Line401 2 Env09 -2.917113e-01
#> 2710 Line401 2 Env10 1.246958e-01
#> 2711 Line401 2 Env11 2.172947e-02
#> 2712 Line401 2 Env18 -1.678294e-01
#> 2713 Line402 2 Env07 2.297479e-02
#> 2714 Line402 2 Env08 2.258854e-01
#> 2715 Line402 2 Env09 4.635950e-01
#> 2716 Line402 2 Env10 2.767889e-01
#> 2717 Line402 2 Env11 1.424683e-01
#> 2718 Line402 2 Env18 -1.940927e-02
#> 2719 Line403 2 Env07 -1.829596e-01
#> 2720 Line403 2 Env08 -4.146949e-01
#> 2721 Line403 2 Env09 3.294732e-01
#> 2722 Line403 2 Env10 -1.430006e+00
#> 2723 Line403 2 Env11 -2.336196e-01
#> 2724 Line403 2 Env18 -2.936709e-01
#> 2725 Line404 2 Env07 4.285265e-01
#> 2726 Line404 2 Env08 6.571877e-03
#> 2727 Line404 2 Env09 4.325090e-01
#> 2728 Line404 2 Env10 -3.027630e-01
#> 2729 Line404 2 Env11 3.143414e-01
#> 2730 Line404 2 Env18 -9.028222e-03
#> 2731 Line405 2 Env07 -9.529361e-02
#> 2732 Line405 2 Env08 -1.371374e-01
#> 2733 Line405 2 Env09 -5.013108e-01
#> 2734 Line405 2 Env10 -2.441228e-02
#> 2735 Line405 2 Env11 1.478118e-01
#> 2736 Line405 2 Env18 -4.525501e-01
#> 2737 Line406 2 Env07 4.550755e-01
#> 2738 Line406 2 Env08 5.736079e-02
#> 2739 Line406 2 Env09 -2.601378e-01
#> 2740 Line406 2 Env10 2.537784e-01
#> 2741 Line406 2 Env11 1.079978e-01
#> 2742 Line406 2 Env18 -3.917701e-01
#> 2743 Line407 2 Env07 4.937575e-01
#> 2744 Line407 2 Env08 2.537155e-01
#> 2745 Line407 2 Env09 3.388842e-01
#> 2746 Line407 2 Env10 8.188867e-01
#> 2747 Line407 2 Env11 1.674897e-01
#> 2748 Line407 2 Env18 3.225304e-01
#> 2749 Line408 2 Env07 4.730664e-01
#> 2750 Line408 2 Env08 2.752198e-01
#> 2751 Line408 2 Env09 3.808680e-01
#> 2752 Line408 2 Env10 1.124774e-01
#> 2753 Line408 2 Env11 -2.112759e-02
#> 2754 Line408 2 Env18 3.180025e-01
#> 2755 Line409 2 Env07 -2.996258e-01
#> 2756 Line409 2 Env08 -5.549479e-01
#> 2757 Line409 2 Env09 4.504536e-01
#> 2758 Line409 2 Env10 -8.456413e-01
#> 2759 Line409 2 Env11 -3.012750e-01
#> 2760 Line409 2 Env18 1.459605e-01
#> 2761 Line410 2 Env07 2.102685e-01
#> 2762 Line410 2 Env08 1.315419e-01
#> 2763 Line410 2 Env09 2.525234e-01
#> 2764 Line410 2 Env10 -9.798726e-02
#> 2765 Line410 2 Env11 -2.471033e-01
#> 2766 Line410 2 Env18 3.037434e-01
#> 2767 Line411 2 Env07 2.166330e-01
#> 2768 Line411 2 Env08 -4.218990e-01
#> 2769 Line411 2 Env09 -9.440876e-01
#> 2770 Line411 2 Env10 -6.988942e-01
#> 2771 Line411 2 Env11 -1.678875e-01
#> 2772 Line411 2 Env18 1.468584e-01
#> 2773 Line412 2 Env07 -5.486310e-02
#> 2774 Line412 2 Env08 -5.117093e-01
#> 2775 Line412 2 Env09 -3.405120e-01
#> 2776 Line412 2 Env10 3.773723e-01
#> 2777 Line412 2 Env11 -1.843534e-01
#> 2778 Line412 2 Env18 -6.057162e-02
#> 2779 Line413 2 Env07 -2.926045e-01
#> 2780 Line413 2 Env08 5.762043e-01
#> 2781 Line413 2 Env09 3.509549e-01
#> 2782 Line413 2 Env10 1.592904e-01
#> 2783 Line413 2 Env11 5.863922e-02
#> 2784 Line413 2 Env18 4.755216e-01
#> 2785 Line414 2 Env07 -4.523329e-01
#> 2786 Line414 2 Env08 -2.286512e-01
#> 2787 Line414 2 Env09 -8.431514e-01
#> 2788 Line414 2 Env10 1.441273e-01
#> 2789 Line414 2 Env11 -2.752357e-01
#> 2790 Line414 2 Env18 -3.083680e-02
#> 2791 Line415 2 Env07 -5.691142e-01
#> 2792 Line415 2 Env08 -2.216013e-01
#> 2793 Line415 2 Env09 -3.208254e-01
#> 2794 Line415 2 Env10 1.892331e-01
#> 2795 Line415 2 Env11 -1.747133e-01
#> 2796 Line415 2 Env18 -3.212256e-01
#> 2797 Line416 2 Env07 -3.080960e-01
#> 2798 Line416 2 Env08 2.870234e-01
#> 2799 Line416 2 Env09 -1.003883e-01
#> 2800 Line416 2 Env10 6.795128e-01
#> 2801 Line416 2 Env11 2.694284e-01
#> 2802 Line416 2 Env18 2.578665e-01
#> 2803 Line417 2 Env07 -3.766497e-01
#> 2804 Line417 2 Env08 -7.197372e-03
#> 2805 Line417 2 Env09 3.516627e-01
#> 2806 Line417 2 Env10 -1.211808e-01
#> 2807 Line417 2 Env11 5.781059e-01
#> 2808 Line417 2 Env18 3.596437e-01
#> 2809 Line418 2 Env07 5.781972e-02
#> 2810 Line418 2 Env08 2.368281e-01
#> 2811 Line418 2 Env09 5.774391e-01
#> 2812 Line418 2 Env10 9.724969e-01
#> 2813 Line418 2 Env11 9.569688e-03
#> 2814 Line418 2 Env18 -4.597834e-01
#> 2815 Line419 2 Env07 -2.141978e-01
#> 2816 Line419 2 Env08 3.816689e-01
#> 2817 Line419 2 Env09 6.620760e-02
#> 2818 Line419 2 Env10 -4.375944e-01
#> 2819 Line419 2 Env11 -4.366327e-02
#> 2820 Line419 2 Env18 4.836885e-01
#> 2821 Line420 2 Env07 3.236813e-01
#> 2822 Line420 2 Env08 2.256180e-01
#> 2823 Line420 2 Env09 -7.961913e-02
#> 2824 Line420 2 Env10 -5.177258e-01
#> 2825 Line420 2 Env11 -2.231099e-02
#> 2826 Line420 2 Env18 -2.355244e-01
#> 2827 Line421 2 Env07 3.638418e-01
#> 2828 Line421 2 Env08 4.116895e-01
#> 2829 Line421 2 Env09 6.802112e-01
#> 2830 Line421 2 Env10 5.206308e-01
#> 2831 Line421 2 Env11 5.456940e-03
#> 2832 Line421 2 Env18 -1.304584e-01
#> 2833 Line422 2 Env07 6.694597e-02
#> 2834 Line422 2 Env08 -2.459827e-01
#> 2835 Line422 2 Env09 7.631272e-02
#> 2836 Line422 2 Env10 -6.459485e-01
#> 2837 Line422 2 Env11 4.417838e-01
#> 2838 Line422 2 Env18 -2.443459e-02
#> 2839 Line423 2 Env07 1.992421e-01
#> 2840 Line423 2 Env08 2.021197e-01
#> 2841 Line423 2 Env09 3.363876e-01
#> 2842 Line423 2 Env10 3.424537e-01
#> 2843 Line423 2 Env11 -5.280971e-02
#> 2844 Line423 2 Env18 2.425124e-01
#> 2845 Line424 2 Env07 -2.055750e-01
#> 2846 Line424 2 Env08 3.444802e-01
#> 2847 Line424 2 Env09 4.592104e-01
#> 2848 Line424 2 Env10 1.313096e-02
#> 2849 Line424 2 Env11 -2.875798e-01
#> 2850 Line424 2 Env18 -1.863014e-01
#> 2851 Line425 2 Env07 -1.499269e-01
#> 2852 Line425 2 Env08 3.834782e-02
#> 2853 Line425 2 Env09 1.067183e-01
#> 2854 Line425 2 Env10 1.458546e-01
#> 2855 Line425 2 Env11 2.410960e-01
#> 2856 Line425 2 Env18 4.546255e-01
#> 2857 Line426 2 Env07 -3.966147e-01
#> 2858 Line426 2 Env08 -1.187205e-01
#> 2859 Line426 2 Env09 4.830198e-01
#> 2860 Line426 2 Env10 -3.466491e-01
#> 2861 Line426 2 Env11 5.663248e-01
#> 2862 Line426 2 Env18 5.407976e-01
#> 2863 Line427 2 Env07 5.447313e-01
#> 2864 Line427 2 Env08 8.596711e-01
#> 2865 Line427 2 Env09 7.788452e-01
#> 2866 Line427 2 Env10 -3.478048e-01
#> 2867 Line427 2 Env11 4.346188e-01
#> 2868 Line427 2 Env18 5.158205e-01
#> 2869 Line428 2 Env07 -1.011702e-01
#> 2870 Line428 2 Env08 -1.302192e+00
#> 2871 Line428 2 Env09 -6.147529e-01
#> 2872 Line428 2 Env10 -5.452523e-01
#> 2873 Line428 2 Env11 1.771516e-01
#> 2874 Line428 2 Env18 -3.371191e-01
#> 2875 Line429 2 Env07 -4.910771e-01
#> 2876 Line429 2 Env08 -1.380986e-03
#> 2877 Line429 2 Env09 7.632848e-01
#> 2878 Line429 2 Env10 1.567501e-02
#> 2879 Line429 2 Env11 8.122935e-02
#> 2880 Line429 2 Env18 -2.335037e-01
#> 2881 Line430 2 Env07 2.945455e-02
#> 2882 Line430 2 Env08 -2.534954e-01
#> 2883 Line430 2 Env09 -6.883268e-02
#> 2884 Line430 2 Env10 1.459813e-01
#> 2885 Line430 2 Env11 -3.450936e-01
#> 2886 Line430 2 Env18 -3.267605e-01
#> 2887 Line431 2 Env07 -5.445370e-01
#> 2888 Line431 2 Env08 -2.542954e-02
#> 2889 Line431 2 Env09 -1.062341e-01
#> 2890 Line431 2 Env10 -3.246251e-01
#> 2891 Line431 2 Env11 3.467331e-01
#> 2892 Line431 2 Env18 -3.949232e-01
#> 2893 Line432 2 Env07 2.165452e-01
#> 2894 Line432 2 Env08 1.715107e-01
#> 2895 Line432 2 Env09 1.254783e-01
#> 2896 Line432 2 Env10 3.677538e-01
#> 2897 Line432 2 Env11 6.975132e-02
#> 2898 Line432 2 Env18 1.363583e-01
#> 2899 Line433 2 Env07 4.816524e-02
#> 2900 Line433 2 Env08 -1.045232e+00
#> 2901 Line433 2 Env09 -1.082645e+00
#> 2902 Line433 2 Env10 1.036337e-01
#> 2903 Line433 2 Env11 -2.853937e-01
#> 2904 Line433 2 Env18 -1.962152e-01
#> 2905 Line434 2 Env07 6.724441e-01
#> 2906 Line434 2 Env08 -7.328965e-02
#> 2907 Line434 2 Env09 -9.389525e-02
#> 2908 Line434 2 Env10 2.391844e-02
#> 2909 Line434 2 Env11 -1.261793e-01
#> 2910 Line434 2 Env18 -3.824716e-01
#> 2911 Line435 2 Env07 -1.318403e-01
#> 2912 Line435 2 Env08 -2.398206e-01
#> 2913 Line435 2 Env09 -1.390257e-01
#> 2914 Line435 2 Env10 -2.705047e-01
#> 2915 Line435 2 Env11 1.009498e-03
#> 2916 Line435 2 Env18 4.470246e-01
#> 2917 Line436 2 Env07 2.165817e-01
#> 2918 Line436 2 Env08 2.487117e-01
#> 2919 Line436 2 Env09 -1.497958e-01
#> 2920 Line436 2 Env10 4.562098e-01
#> 2921 Line436 2 Env11 -5.238314e-01
#> 2922 Line436 2 Env18 -2.136221e-01
#> 2923 Line437 2 Env07 -2.507328e-01
#> 2924 Line437 2 Env08 -5.522927e-01
#> 2925 Line437 2 Env09 -6.649473e-01
#> 2926 Line437 2 Env10 4.639352e-01
#> 2927 Line437 2 Env11 -3.631479e-01
#> 2928 Line437 2 Env18 2.117734e-01
#> 2929 Line438 2 Env07 9.352016e-01
#> 2930 Line438 2 Env08 1.006713e+00
#> 2931 Line438 2 Env09 -2.481270e-01
#> 2932 Line438 2 Env10 1.398606e-01
#> 2933 Line438 2 Env11 3.525152e-01
#> 2934 Line438 2 Env18 -1.045095e-01
#> 2935 Line439 2 Env07 5.574673e-01
#> 2936 Line439 2 Env08 -5.149027e-02
#> 2937 Line439 2 Env09 4.369790e-01
#> 2938 Line439 2 Env10 -5.578563e-01
#> 2939 Line439 2 Env11 -2.072160e-01
#> 2940 Line439 2 Env18 4.612961e-01
#> 2941 Line440 2 Env07 2.001588e-01
#> 2942 Line440 2 Env08 -1.615362e-01
#> 2943 Line440 2 Env09 -7.264408e-01
#> 2944 Line440 2 Env10 -5.202710e-01
#> 2945 Line440 2 Env11 -1.450322e-01
#> 2946 Line440 2 Env18 -6.499763e-01
#> 2947 Line441 2 Env07 -7.095140e-01
#> 2948 Line441 2 Env08 4.439491e-02
#> 2949 Line441 2 Env09 -1.801576e-01
#> 2950 Line441 2 Env10 -3.077323e-03
#> 2951 Line441 2 Env11 -6.572472e-01
#> 2952 Line441 2 Env18 -5.042781e-01
#> 2953 Line442 2 Env07 -5.759046e-02
#> 2954 Line442 2 Env08 -3.750676e-01
#> 2955 Line442 2 Env09 -7.796342e-01
#> 2956 Line442 2 Env10 -2.897624e-01
#> 2957 Line442 2 Env11 -2.960317e-01
#> 2958 Line442 2 Env18 -1.113776e-01
#> 2959 Line443 2 Env07 -7.531140e-01
#> 2960 Line443 2 Env08 3.172879e-01
#> 2961 Line443 2 Env09 5.582706e-02
#> 2962 Line443 2 Env10 3.770482e-01
#> 2963 Line443 2 Env11 -3.589525e-01
#> 2964 Line443 2 Env18 -2.900413e-01
#> 2965 Line444 2 Env07 -4.297362e-02
#> 2966 Line444 2 Env08 -5.027739e-02
#> 2967 Line444 2 Env09 7.364090e-01
#> 2968 Line444 2 Env10 4.946388e-01
#> 2969 Line444 2 Env11 4.036941e-01
#> 2970 Line444 2 Env18 2.670953e-01
#> 2971 Line445 2 Env07 -6.517579e-01
#> 2972 Line445 2 Env08 -1.113921e-01
#> 2973 Line445 2 Env09 -2.900323e-01
#> 2974 Line445 2 Env10 -9.022200e-01
#> 2975 Line445 2 Env11 4.365229e-02
#> 2976 Line445 2 Env18 -1.096996e-01
#> 2977 Line446 2 Env07 -2.423085e-01
#> 2978 Line446 2 Env08 2.358446e-01
#> 2979 Line446 2 Env09 2.967151e-01
#> 2980 Line446 2 Env10 -2.267239e-01
#> 2981 Line446 2 Env11 6.171418e-01
#> 2982 Line446 2 Env18 1.749456e-01
#> 2983 Line447 2 Env07 8.414972e-01
#> 2984 Line447 2 Env08 -6.241039e-01
#> 2985 Line447 2 Env09 -3.285628e-01
#> 2986 Line447 2 Env10 1.654151e-01
#> 2987 Line447 2 Env11 4.740068e-01
#> 2988 Line447 2 Env18 7.056005e-01
#> 2989 Line448 2 Env07 -2.075655e-01
#> 2990 Line448 2 Env08 3.025091e-01
#> 2991 Line448 2 Env09 -3.399877e-01
#> 2992 Line448 2 Env10 4.692409e-01
#> 2993 Line448 2 Env11 -1.079045e-01
#> 2994 Line448 2 Env18 -5.219622e-01
#> 2995 Line449 2 Env07 2.521464e-01
#> 2996 Line449 2 Env08 -4.260738e-01
#> 2997 Line449 2 Env09 1.136695e+00
#> 2998 Line449 2 Env10 4.440225e-01
#> 2999 Line449 2 Env11 1.239444e-01
#> 3000 Line449 2 Env18 -5.342003e-02
#> 3001 Line450 2 Env07 -1.773016e-01
#> 3002 Line450 2 Env08 -5.864637e-01
#> 3003 Line450 2 Env09 -8.960906e-01
#> 3004 Line450 2 Env10 9.295341e-01
#> 3005 Line450 2 Env11 -3.496573e-01
#> 3006 Line450 2 Env18 -1.103313e+00
#> 3007 Line451 2 Env07 -5.368574e-01
#> 3008 Line451 2 Env08 -2.162229e-01
#> 3009 Line451 2 Env09 2.273259e-02
#> 3010 Line451 2 Env10 -1.839032e-01
#> 3011 Line451 2 Env11 -2.734482e-01
#> 3012 Line451 2 Env18 -1.246375e-01
#> 3013 Line452 2 Env07 3.857974e-01
#> 3014 Line452 2 Env08 3.895974e-01
#> 3015 Line452 2 Env09 7.241085e-01
#> 3016 Line452 2 Env10 4.296917e-01
#> 3017 Line452 2 Env11 4.835300e-01
#> 3018 Line452 2 Env18 9.976889e-01
#> 3019 Line453 2 Env07 -7.875247e-01
#> 3020 Line453 2 Env08 -1.422300e-01
#> 3021 Line453 2 Env09 -5.047220e-02
#> 3022 Line453 2 Env10 1.286886e-01
#> 3023 Line453 2 Env11 -4.585328e-02
#> 3024 Line453 2 Env18 2.593400e-01
#> 3025 Line454 2 Env07 1.897565e-01
#> 3026 Line454 2 Env08 -2.170448e-02
#> 3027 Line454 2 Env09 -3.619273e-01
#> 3028 Line454 2 Env10 1.710258e-01
#> 3029 Line454 2 Env11 1.820602e-01
#> 3030 Line454 2 Env18 -6.295293e-02
#> 3031 Line455 2 Env07 1.257541e-01
#> 3032 Line455 2 Env08 6.028350e-01
#> 3033 Line455 2 Env09 3.758814e-01
#> 3034 Line455 2 Env10 4.666427e-01
#> 3035 Line455 2 Env11 3.932886e-01
#> 3036 Line455 2 Env18 -3.855363e-01
#> 3037 Line456 2 Env07 2.380393e-01
#> 3038 Line456 2 Env08 6.454923e-02
#> 3039 Line456 2 Env09 -8.852665e-02
#> 3040 Line456 2 Env10 4.936016e-01
#> 3041 Line456 2 Env11 5.840086e-02
#> 3042 Line456 2 Env18 6.345307e-01
#> 3043 Line457 2 Env07 -1.484142e-01
#> 3044 Line457 2 Env08 7.509217e-01
#> 3045 Line457 2 Env09 -2.443983e-01
#> 3046 Line457 2 Env10 1.886972e-01
#> 3047 Line457 2 Env11 2.169015e-01
#> 3048 Line457 2 Env18 1.208942e-01
#> 3049 Line458 2 Env07 1.658718e-01
#> 3050 Line458 2 Env08 2.946521e-01
#> 3051 Line458 2 Env09 9.327704e-01
#> 3052 Line458 2 Env10 8.310815e-01
#> 3053 Line458 2 Env11 -5.911329e-02
#> 3054 Line458 2 Env18 7.618187e-01
#> 3055 Line459 2 Env07 -1.602071e-01
#> 3056 Line459 2 Env08 -5.636245e-01
#> 3057 Line459 2 Env09 -4.430454e-01
#> 3058 Line459 2 Env10 -4.323722e-01
#> 3059 Line459 2 Env11 -4.496299e-01
#> 3060 Line459 2 Env18 -1.805055e-01
#> 3061 Line460 2 Env07 -5.128661e-01
#> 3062 Line460 2 Env08 5.613691e-01
#> 3063 Line460 2 Env09 4.471507e-01
#> 3064 Line460 2 Env10 -8.085988e-01
#> 3065 Line460 2 Env11 -3.800844e-01
#> 3066 Line460 2 Env18 5.801176e-01
#> 3067 Line461 2 Env07 -3.774906e-02
#> 3068 Line461 2 Env08 8.918928e-01
#> 3069 Line461 2 Env09 2.046373e-01
#> 3070 Line461 2 Env10 2.050786e-01
#> 3071 Line461 2 Env11 -3.821651e-02
#> 3072 Line461 2 Env18 4.516897e-01
#> 3073 Line462 2 Env07 -2.101380e-01
#> 3074 Line462 2 Env08 3.528009e-01
#> 3075 Line462 2 Env09 1.059709e+00
#> 3076 Line462 2 Env10 6.487733e-01
#> 3077 Line462 2 Env11 5.611301e-01
#> 3078 Line462 2 Env18 8.983984e-01
#> 3079 Line463 2 Env07 -5.580144e-02
#> 3080 Line463 2 Env08 1.136258e-01
#> 3081 Line463 2 Env09 -3.582224e-01
#> 3082 Line463 2 Env10 -2.230686e-01
#> 3083 Line463 2 Env11 -5.300265e-01
#> 3084 Line463 2 Env18 -3.421853e-01
#> 3085 Line464 2 Env07 -5.976535e-02
#> 3086 Line464 2 Env08 2.980213e-01
#> 3087 Line464 2 Env09 1.925046e-01
#> 3088 Line464 2 Env10 -3.311046e-01
#> 3089 Line464 2 Env11 -4.655951e-01
#> 3090 Line464 2 Env18 7.367072e-02
#> 3091 Line465 2 Env07 -3.359528e-02
#> 3092 Line465 2 Env08 3.700589e-01
#> 3093 Line465 2 Env09 3.196115e-02
#> 3094 Line465 2 Env10 -5.867339e-03
#> 3095 Line465 2 Env11 4.607880e-02
#> 3096 Line465 2 Env18 -2.813679e-01
#> 3097 Line466 2 Env07 8.109439e-02
#> 3098 Line466 2 Env08 2.710562e-02
#> 3099 Line466 2 Env09 2.868791e-01
#> 3100 Line466 2 Env10 3.649212e-01
#> 3101 Line466 2 Env11 3.286566e-01
#> 3102 Line466 2 Env18 1.696620e-01
#> 3103 Line467 2 Env07 -2.049983e-01
#> 3104 Line467 2 Env08 -2.067242e-01
#> 3105 Line467 2 Env09 -4.809010e-01
#> 3106 Line467 2 Env10 4.059622e-01
#> 3107 Line467 2 Env11 5.938833e-01
#> 3108 Line467 2 Env18 -1.662090e-02
#> 3109 Line468 2 Env07 -2.196019e-03
#> 3110 Line468 2 Env08 -1.652654e-01
#> 3111 Line468 2 Env09 8.438293e-02
#> 3112 Line468 2 Env10 1.861029e-01
#> 3113 Line468 2 Env11 4.379570e-01
#> 3114 Line468 2 Env18 2.866262e-01
#> 3115 Line469 2 Env07 3.256827e-01
#> 3116 Line469 2 Env08 2.682046e-01
#> 3117 Line469 2 Env09 1.509331e-01
#> 3118 Line469 2 Env10 1.163935e-01
#> 3119 Line469 2 Env11 1.950116e-01
#> 3120 Line469 2 Env18 7.982267e-02
#> 3121 Line470 2 Env07 -7.660226e-02
#> 3122 Line470 2 Env08 -2.184190e-02
#> 3123 Line470 2 Env09 -3.583300e-01
#> 3124 Line470 2 Env10 -5.917390e-01
#> 3125 Line470 2 Env11 -2.694019e-02
#> 3126 Line470 2 Env18 -2.676855e-01
#> 3127 Line471 2 Env07 9.886897e-02
#> 3128 Line471 2 Env08 5.148411e-02
#> 3129 Line471 2 Env09 1.041769e+00
#> 3130 Line471 2 Env10 4.991517e-01
#> 3131 Line471 2 Env11 -2.759165e-01
#> 3132 Line471 2 Env18 -4.006020e-02
#> 3133 Line472 2 Env07 -3.968355e-02
#> 3134 Line472 2 Env08 -5.892998e-01
#> 3135 Line472 2 Env09 -8.433605e-01
#> 3136 Line472 2 Env10 2.247841e-01
#> 3137 Line472 2 Env11 -8.860557e-02
#> 3138 Line472 2 Env18 -1.575884e-01
#> 3139 Line473 2 Env07 2.449058e-01
#> 3140 Line473 2 Env08 -2.679446e-01
#> 3141 Line473 2 Env09 4.910809e-01
#> 3142 Line473 2 Env10 -8.247019e-01
#> 3143 Line473 2 Env11 -1.341941e-01
#> 3144 Line473 2 Env18 -1.772371e-01
#> 3145 Line474 2 Env07 -1.631212e-01
#> 3146 Line474 2 Env08 -5.457100e-01
#> 3147 Line474 2 Env09 -7.936695e-01
#> 3148 Line474 2 Env10 1.800190e-01
#> 3149 Line474 2 Env11 -3.492748e-01
#> 3150 Line474 2 Env18 -4.816460e-01
#> 3151 Line475 2 Env07 3.858371e-01
#> 3152 Line475 2 Env08 1.351180e-02
#> 3153 Line475 2 Env09 -2.184656e-01
#> 3154 Line475 2 Env10 3.992395e-01
#> 3155 Line475 2 Env11 -1.765522e-01
#> 3156 Line475 2 Env18 -4.230817e-01
#> 3157 Line476 2 Env07 -6.354329e-02
#> 3158 Line476 2 Env08 -5.974567e-02
#> 3159 Line476 2 Env09 8.854801e-01
#> 3160 Line476 2 Env10 4.938334e-01
#> 3161 Line476 2 Env11 6.847668e-01
#> 3162 Line476 2 Env18 4.796469e-01
#> 3163 Line477 2 Env07 -2.480675e-01
#> 3164 Line477 2 Env08 -1.722255e-01
#> 3165 Line477 2 Env09 -6.256433e-01
#> 3166 Line477 2 Env10 -5.548491e-01
#> 3167 Line477 2 Env11 -1.382821e-01
#> 3168 Line477 2 Env18 3.172788e-01
#> 3169 Line478 2 Env07 -5.626158e-01
#> 3170 Line478 2 Env08 1.938583e-01
#> 3171 Line478 2 Env09 3.964626e-03
#> 3172 Line478 2 Env10 -5.849700e-01
#> 3173 Line478 2 Env11 -1.274783e-01
#> 3174 Line478 2 Env18 -5.038894e-01
#> 3175 Line479 2 Env07 6.964489e-01
#> 3176 Line479 2 Env08 7.010937e-02
#> 3177 Line479 2 Env09 -8.699923e-02
#> 3178 Line479 2 Env10 3.969676e-01
#> 3179 Line479 2 Env11 -5.048246e-02
#> 3180 Line479 2 Env18 2.397630e-01
#> 3181 Line480 2 Env07 4.771511e-01
#> 3182 Line480 2 Env08 -5.631871e-02
#> 3183 Line480 2 Env09 3.124875e-01
#> 3184 Line480 2 Env10 1.050427e+00
#> 3185 Line480 2 Env11 2.121208e-01
#> 3186 Line480 2 Env18 3.931429e-02
#> 3187 Line481 2 Env07 -2.360902e-01
#> 3188 Line481 2 Env08 2.474122e-01
#> 3189 Line481 2 Env09 4.789110e-01
#> 3190 Line481 2 Env10 1.073238e-01
#> 3191 Line481 2 Env11 3.659585e-01
#> 3192 Line481 2 Env18 -2.208459e-01
#> 3193 Line482 2 Env07 -6.746652e-01
#> 3194 Line482 2 Env08 -1.423498e-01
#> 3195 Line482 2 Env09 -5.491483e-01
#> 3196 Line482 2 Env10 -1.611212e-01
#> 3197 Line482 2 Env11 1.238833e-01
#> 3198 Line482 2 Env18 -3.415031e-01
#> 3199 Line483 2 Env07 -6.510996e-01
#> 3200 Line483 2 Env08 2.305794e-01
#> 3201 Line483 2 Env09 -4.535972e-01
#> 3202 Line483 2 Env10 1.430234e-01
#> 3203 Line483 2 Env11 1.920677e-01
#> 3204 Line483 2 Env18 1.908374e-01
#> 3205 Line484 2 Env07 1.750004e-01
#> 3206 Line484 2 Env08 1.281273e-01
#> 3207 Line484 2 Env09 1.541320e-01
#> 3208 Line484 2 Env10 3.580099e-01
#> 3209 Line484 2 Env11 1.230135e-02
#> 3210 Line484 2 Env18 -4.327763e-03
#> 3211 Line485 2 Env07 8.591130e-01
#> 3212 Line485 2 Env08 3.984696e-01
#> 3213 Line485 2 Env09 2.724308e-01
#> 3214 Line485 2 Env10 4.959955e-01
#> 3215 Line485 2 Env11 1.647880e-01
#> 3216 Line485 2 Env18 1.878780e-01
#> 3217 Line486 2 Env07 1.406309e-01
#> 3218 Line486 2 Env08 -3.299947e-01
#> 3219 Line486 2 Env09 -1.746237e-01
#> 3220 Line486 2 Env10 4.978671e-02
#> 3221 Line486 2 Env11 -1.524626e-01
#> 3222 Line486 2 Env18 2.150668e-01
#> 3223 Line487 2 Env07 -3.691694e-02
#> 3224 Line487 2 Env08 -2.587806e-01
#> 3225 Line487 2 Env09 -2.456653e-01
#> 3226 Line487 2 Env10 -4.860604e-01
#> 3227 Line487 2 Env11 6.688308e-02
#> 3228 Line487 2 Env18 4.277078e-01
#> 3229 Line488 2 Env07 4.389565e-01
#> 3230 Line488 2 Env08 -9.803447e-02
#> 3231 Line488 2 Env09 -3.120294e-01
#> 3232 Line488 2 Env10 4.592851e-01
#> 3233 Line488 2 Env11 6.431404e-01
#> 3234 Line488 2 Env18 -9.491138e-02
#> 3235 Line489 2 Env07 -1.522128e-01
#> 3236 Line489 2 Env08 3.822185e-01
#> 3237 Line489 2 Env09 -5.523805e-02
#> 3238 Line489 2 Env10 -1.571521e-01
#> 3239 Line489 2 Env11 -2.835575e-01
#> 3240 Line489 2 Env18 -6.877879e-03
#> 3241 Line490 2 Env07 -2.498936e-01
#> 3242 Line490 2 Env08 5.544483e-01
#> 3243 Line490 2 Env09 -2.316629e-01
#> 3244 Line490 2 Env10 5.589257e-01
#> 3245 Line490 2 Env11 1.454931e-01
#> 3246 Line490 2 Env18 8.089218e-01
#> 3247 Line491 2 Env07 3.095620e-01
#> 3248 Line491 2 Env08 -6.489997e-01
#> 3249 Line491 2 Env09 3.180641e-01
#> 3250 Line491 2 Env10 3.248508e-01
#> 3251 Line491 2 Env11 -4.742402e-01
#> 3252 Line491 2 Env18 -1.483494e-01
#> 3253 Line492 2 Env07 6.465929e-02
#> 3254 Line492 2 Env08 8.085793e-03
#> 3255 Line492 2 Env09 5.320146e-02
#> 3256 Line492 2 Env10 -6.958482e-01
#> 3257 Line492 2 Env11 3.284597e-01
#> 3258 Line492 2 Env18 -2.947430e-01
#> 3259 Line493 2 Env07 7.230805e-03
#> 3260 Line493 2 Env08 -8.563154e-02
#> 3261 Line493 2 Env09 -5.886486e-02
#> 3262 Line493 2 Env10 -1.122066e+00
#> 3263 Line493 2 Env11 -1.118962e-01
#> 3264 Line493 2 Env18 -3.695091e-01
#> 3265 Line494 2 Env07 2.353324e-01
#> 3266 Line494 2 Env08 1.755170e-01
#> 3267 Line494 2 Env09 -4.601296e-01
#> 3268 Line494 2 Env10 5.684251e-01
#> 3269 Line494 2 Env11 -2.017712e-01
#> 3270 Line494 2 Env18 4.211957e-01
#> 3271 Line495 2 Env07 -6.067863e-02
#> 3272 Line495 2 Env08 -5.220268e-01
#> 3273 Line495 2 Env09 1.253751e-01
#> 3274 Line495 2 Env10 3.137329e-01
#> 3275 Line495 2 Env11 6.684349e-02
#> 3276 Line495 2 Env18 -5.873161e-01
#> 3277 Line496 2 Env07 5.285133e-01
#> 3278 Line496 2 Env08 3.439581e-01
#> 3279 Line496 2 Env09 1.830050e-01
#> 3280 Line496 2 Env10 1.743509e-01
#> 3281 Line496 2 Env11 2.887337e-01
#> 3282 Line496 2 Env18 4.261468e-01
#> 3283 Line497 2 Env07 -3.236221e-01
#> 3284 Line497 2 Env08 -7.411147e-02
#> 3285 Line497 2 Env09 -9.793533e-02
#> 3286 Line497 2 Env10 -6.400513e-02
#> 3287 Line497 2 Env11 -2.123664e-01
#> 3288 Line497 2 Env18 1.393497e-01
#> 3289 Line498 2 Env07 -3.750728e-01
#> 3290 Line498 2 Env08 2.455763e-01
#> 3291 Line498 2 Env09 7.922759e-01
#> 3292 Line498 2 Env10 6.522879e-01
#> 3293 Line498 2 Env11 -4.426905e-02
#> 3294 Line498 2 Env18 4.403647e-02
#> 3295 Line499 2 Env07 -1.369626e-01
#> 3296 Line499 2 Env08 -3.156295e-02
#> 3297 Line499 2 Env09 -2.025579e-01
#> 3298 Line499 2 Env10 9.563605e-02
#> 3299 Line499 2 Env11 -1.196079e-01
#> 3300 Line499 2 Env18 -5.601190e-01
#> 3301 Line500 2 Env07 -1.382644e-01
#> 3302 Line500 2 Env08 -2.600126e-01
#> 3303 Line500 2 Env09 -1.408302e-01
#> 3304 Line500 2 Env10 -3.051666e-01
#> 3305 Line500 2 Env11 -2.826251e-01
#> 3306 Line500 2 Env18 -7.882763e-01
#> 3307 Line501 2 Env07 -1.180153e-01
#> 3308 Line501 2 Env08 1.766371e-01
#> 3309 Line501 2 Env09 -1.508217e-01
#> 3310 Line501 2 Env10 -4.457630e-01
#> 3311 Line501 2 Env11 -5.420383e-01
#> 3312 Line501 2 Env18 3.649028e-01
#> 3313 Line502 2 Env07 6.399184e-01
#> 3314 Line502 2 Env08 5.382367e-01
#> 3315 Line502 2 Env09 -1.978510e-01
#> 3316 Line502 2 Env10 1.147028e+00
#> 3317 Line502 2 Env11 -1.925140e-02
#> 3318 Line502 2 Env18 4.235418e-01
We can see the incidence matrix of lines by environments using the
Image
function in MegaLMM
Image(as.matrix(table(yield_data$Line,yield_data$Env))) + theme(legend.position = 'none') + xlab('Environment') + ylab('Line')
As you can see, no line is grown in every environment, and no environment includes every line. In fact, there seems to be largely 2 sets of lines, one grown in ~1/4 the environments and the other grown in a portion of the remaining environments. These two sets of lines are designated as different “populations” in the input data.
We can look at the number of observations by line and by environment:
The genetic data is available as an additive genomic relationship matrix calculated from GBS SNPs.
data('K',package='MegaLMM')
We can view the matrix also using Image
Image(K)
This shows we also have two groups of fairly related lines, with low relationships between groups.
MegaLMM
The yield data was provided in the tall format,
meaning a single observation per row. In this format we would say we
have 1 trait (Yield
) with values measured in many
environments.
But MegaLMM
isn’t good for modeling GxE like this.
Instead, we want to consider the yield in each environment as a separate
trait, and each line is measured for 6-9 of these traits. So we need to
construct a 502x19
trait matrix. The MegaLMM
package includes a helper function to do this called
create_data_matrices
. This uses tidyr
’s
pivot_wider
function to create the matrix, and the
arguments are the same.
data_matrices = create_data_matrices(
tall_data = yield_data, # your input tall data.frame,
id_cols = c('Line','Population'), # vector giving the set of columns of tall_data used to identify each individual, and any covariates you'll want to use to model the trait data across individuals.
names_from = 'Env', # vector giving the set of columns of tall_data used to identify each trait
values_from = 'Yield' # name of the trait data column
)
The output of create_data_matrices
is a list with 3
elements. We’ll only use the first two.
The first is a new data.frame with one row per individual, and a single column giving the Line identifier. If you have covariates among lines (e.g. sex, population, etc), those variables should be included here too.
sample_data = data_matrices$data
sample_data
#> Line Population
#> 1 Line001 1
#> 2 Line002 1
#> 3 Line003 1
#> 4 Line004 1
#> 5 Line005 1
#> 6 Line006 1
#> 7 Line007 1
#> 8 Line008 1
#> 9 Line009 1
#> 10 Line010 1
#> 11 Line011 1
#> 12 Line012 1
#> 13 Line013 1
#> 14 Line014 1
#> 15 Line015 1
#> 16 Line016 1
#> 17 Line017 1
#> 18 Line018 1
#> 19 Line019 1
#> 20 Line020 1
#> 21 Line021 1
#> 22 Line022 1
#> 23 Line023 1
#> 24 Line024 1
#> 25 Line025 1
#> 26 Line026 1
#> 27 Line027 1
#> 28 Line028 1
#> 29 Line029 1
#> 30 Line030 1
#> 31 Line031 1
#> 32 Line032 1
#> 33 Line033 1
#> 34 Line034 1
#> 35 Line035 1
#> 36 Line036 1
#> 37 Line037 1
#> 38 Line038 1
#> 39 Line039 1
#> 40 Line040 1
#> 41 Line041 1
#> 42 Line042 1
#> 43 Line043 1
#> 44 Line044 1
#> 45 Line045 1
#> 46 Line046 1
#> 47 Line047 1
#> 48 Line048 1
#> 49 Line049 1
#> 50 Line050 1
#> 51 Line051 1
#> 52 Line052 1
#> 53 Line053 1
#> 54 Line054 1
#> 55 Line055 1
#> 56 Line056 1
#> 57 Line057 1
#> 58 Line058 1
#> 59 Line059 1
#> 60 Line060 1
#> 61 Line061 1
#> 62 Line062 1
#> 63 Line063 1
#> 64 Line064 1
#> 65 Line065 1
#> 66 Line066 1
#> 67 Line067 1
#> 68 Line068 1
#> 69 Line069 1
#> 70 Line070 1
#> 71 Line071 1
#> 72 Line072 1
#> 73 Line073 1
#> 74 Line074 1
#> 75 Line075 1
#> 76 Line076 1
#> 77 Line077 1
#> 78 Line078 1
#> 79 Line079 1
#> 80 Line080 1
#> 81 Line081 1
#> 82 Line082 1
#> 83 Line083 1
#> 84 Line084 1
#> 85 Line085 1
#> 86 Line086 1
#> 87 Line087 1
#> 88 Line088 1
#> 89 Line089 1
#> 90 Line090 1
#> 91 Line091 1
#> 92 Line092 1
#> 93 Line093 1
#> 94 Line094 1
#> 95 Line095 1
#> 96 Line096 1
#> 97 Line097 1
#> 98 Line098 1
#> 99 Line099 1
#> 100 Line100 1
#> 101 Line101 1
#> 102 Line102 1
#> 103 Line103 1
#> 104 Line104 1
#> 105 Line105 1
#> 106 Line106 1
#> 107 Line107 1
#> 108 Line108 1
#> 109 Line109 1
#> 110 Line110 1
#> 111 Line111 1
#> 112 Line112 1
#> 113 Line113 1
#> 114 Line114 1
#> 115 Line115 1
#> 116 Line116 1
#> 117 Line117 1
#> 118 Line118 1
#> 119 Line119 1
#> 120 Line120 1
#> 121 Line121 1
#> 122 Line122 1
#> 123 Line123 1
#> 124 Line124 1
#> 125 Line125 1
#> 126 Line126 1
#> 127 Line127 1
#> 128 Line128 1
#> 129 Line129 1
#> 130 Line130 1
#> 131 Line131 1
#> 132 Line132 1
#> 133 Line133 1
#> 134 Line134 1
#> 135 Line135 1
#> 136 Line136 1
#> 137 Line137 1
#> 138 Line138 1
#> 139 Line139 1
#> 140 Line140 1
#> 141 Line141 1
#> 142 Line142 1
#> 143 Line143 1
#> 144 Line144 1
#> 145 Line145 1
#> 146 Line146 1
#> 147 Line147 1
#> 148 Line148 1
#> 149 Line149 1
#> 150 Line150 1
#> 151 Line151 1
#> 152 Line152 1
#> 153 Line153 1
#> 154 Line154 1
#> 155 Line155 1
#> 156 Line156 1
#> 157 Line157 1
#> 158 Line158 1
#> 159 Line159 1
#> 160 Line160 1
#> 161 Line161 1
#> 162 Line162 1
#> 163 Line163 1
#> 164 Line164 1
#> 165 Line165 1
#> 166 Line166 1
#> 167 Line167 1
#> 168 Line168 1
#> 169 Line169 1
#> 170 Line170 1
#> 171 Line171 1
#> 172 Line172 1
#> 173 Line173 1
#> 174 Line174 1
#> 175 Line175 1
#> 176 Line176 1
#> 177 Line177 1
#> 178 Line178 1
#> 179 Line179 1
#> 180 Line180 1
#> 181 Line181 1
#> 182 Line182 1
#> 183 Line183 1
#> 184 Line184 1
#> 185 Line185 1
#> 186 Line186 1
#> 187 Line187 1
#> 188 Line188 1
#> 189 Line189 1
#> 190 Line190 2
#> 191 Line191 2
#> 192 Line192 2
#> 193 Line193 2
#> 194 Line194 2
#> 195 Line195 2
#> 196 Line196 2
#> 197 Line197 2
#> 198 Line198 2
#> 199 Line199 2
#> 200 Line200 2
#> 201 Line201 2
#> 202 Line202 2
#> 203 Line203 2
#> 204 Line204 2
#> 205 Line205 2
#> 206 Line206 2
#> 207 Line207 2
#> 208 Line208 2
#> 209 Line209 2
#> 210 Line210 2
#> 211 Line211 2
#> 212 Line212 2
#> 213 Line213 2
#> 214 Line214 2
#> 215 Line215 2
#> 216 Line216 2
#> 217 Line217 2
#> 218 Line218 2
#> 219 Line219 2
#> 220 Line220 2
#> 221 Line221 2
#> 222 Line222 2
#> 223 Line223 2
#> 224 Line224 2
#> 225 Line225 2
#> 226 Line226 2
#> 227 Line227 2
#> 228 Line228 2
#> 229 Line229 2
#> 230 Line230 2
#> 231 Line231 2
#> 232 Line232 2
#> 233 Line233 2
#> 234 Line234 2
#> 235 Line235 2
#> 236 Line236 2
#> 237 Line237 2
#> 238 Line238 2
#> 239 Line239 2
#> 240 Line240 2
#> 241 Line241 2
#> 242 Line242 2
#> 243 Line243 2
#> 244 Line244 2
#> 245 Line245 2
#> 246 Line246 2
#> 247 Line247 2
#> 248 Line248 2
#> 249 Line249 2
#> 250 Line250 2
#> 251 Line251 2
#> 252 Line252 2
#> 253 Line253 2
#> 254 Line254 2
#> 255 Line255 2
#> 256 Line256 2
#> 257 Line257 2
#> 258 Line258 2
#> 259 Line259 2
#> 260 Line260 2
#> 261 Line261 2
#> 262 Line262 2
#> 263 Line263 2
#> 264 Line264 2
#> 265 Line265 2
#> 266 Line266 2
#> 267 Line267 2
#> 268 Line268 2
#> 269 Line269 2
#> 270 Line270 2
#> 271 Line271 2
#> 272 Line272 2
#> 273 Line273 2
#> 274 Line274 2
#> 275 Line275 2
#> 276 Line276 2
#> 277 Line277 2
#> 278 Line278 2
#> 279 Line279 2
#> 280 Line280 2
#> 281 Line281 2
#> 282 Line282 2
#> 283 Line283 2
#> 284 Line284 2
#> 285 Line285 2
#> 286 Line286 2
#> 287 Line287 2
#> 288 Line288 2
#> 289 Line289 2
#> 290 Line290 2
#> 291 Line291 2
#> 292 Line292 2
#> 293 Line293 2
#> 294 Line294 2
#> 295 Line295 2
#> 296 Line296 2
#> 297 Line297 2
#> 298 Line298 2
#> 299 Line299 2
#> 300 Line300 2
#> 301 Line301 2
#> 302 Line302 2
#> 303 Line303 2
#> 304 Line304 2
#> 305 Line305 2
#> 306 Line306 2
#> 307 Line307 2
#> 308 Line308 2
#> 309 Line309 2
#> 310 Line310 2
#> 311 Line311 2
#> 312 Line312 2
#> 313 Line313 2
#> 314 Line314 2
#> 315 Line315 2
#> 316 Line316 2
#> 317 Line317 2
#> 318 Line318 2
#> 319 Line319 2
#> 320 Line320 2
#> 321 Line321 2
#> 322 Line322 2
#> 323 Line323 2
#> 324 Line324 2
#> 325 Line325 2
#> 326 Line326 2
#> 327 Line327 2
#> 328 Line328 2
#> 329 Line329 2
#> 330 Line330 2
#> 331 Line331 2
#> 332 Line332 2
#> 333 Line333 2
#> 334 Line334 2
#> 335 Line335 2
#> 336 Line336 2
#> 337 Line337 2
#> 338 Line338 2
#> 339 Line339 2
#> 340 Line340 2
#> 341 Line341 2
#> 342 Line342 2
#> 343 Line343 2
#> 344 Line344 2
#> 345 Line345 2
#> 346 Line346 2
#> 347 Line347 2
#> 348 Line348 2
#> 349 Line349 2
#> 350 Line350 2
#> 351 Line351 2
#> 352 Line352 2
#> 353 Line353 2
#> 354 Line354 2
#> 355 Line355 2
#> 356 Line356 2
#> 357 Line357 2
#> 358 Line358 2
#> 359 Line359 2
#> 360 Line360 2
#> 361 Line361 2
#> 362 Line362 2
#> 363 Line363 2
#> 364 Line364 2
#> 365 Line365 2
#> 366 Line366 2
#> 367 Line367 2
#> 368 Line368 2
#> 369 Line369 2
#> 370 Line370 2
#> 371 Line371 2
#> 372 Line372 2
#> 373 Line373 2
#> 374 Line374 2
#> 375 Line375 2
#> 376 Line376 2
#> 377 Line377 2
#> 378 Line378 2
#> 379 Line379 2
#> 380 Line380 2
#> 381 Line381 2
#> 382 Line382 2
#> 383 Line383 2
#> 384 Line384 2
#> 385 Line385 2
#> 386 Line386 2
#> 387 Line387 2
#> 388 Line388 2
#> 389 Line389 2
#> 390 Line390 2
#> 391 Line391 2
#> 392 Line392 2
#> 393 Line393 2
#> 394 Line394 2
#> 395 Line395 2
#> 396 Line396 2
#> 397 Line397 2
#> 398 Line398 2
#> 399 Line399 2
#> 400 Line400 2
#> 401 Line401 2
#> 402 Line402 2
#> 403 Line403 2
#> 404 Line404 2
#> 405 Line405 2
#> 406 Line406 2
#> 407 Line407 2
#> 408 Line408 2
#> 409 Line409 2
#> 410 Line410 2
#> 411 Line411 2
#> 412 Line412 2
#> 413 Line413 2
#> 414 Line414 2
#> 415 Line415 2
#> 416 Line416 2
#> 417 Line417 2
#> 418 Line418 2
#> 419 Line419 2
#> 420 Line420 2
#> 421 Line421 2
#> 422 Line422 2
#> 423 Line423 2
#> 424 Line424 2
#> 425 Line425 2
#> 426 Line426 2
#> 427 Line427 2
#> 428 Line428 2
#> 429 Line429 2
#> 430 Line430 2
#> 431 Line431 2
#> 432 Line432 2
#> 433 Line433 2
#> 434 Line434 2
#> 435 Line435 2
#> 436 Line436 2
#> 437 Line437 2
#> 438 Line438 2
#> 439 Line439 2
#> 440 Line440 2
#> 441 Line441 2
#> 442 Line442 2
#> 443 Line443 2
#> 444 Line444 2
#> 445 Line445 2
#> 446 Line446 2
#> 447 Line447 2
#> 448 Line448 2
#> 449 Line449 2
#> 450 Line450 2
#> 451 Line451 2
#> 452 Line452 2
#> 453 Line453 2
#> 454 Line454 2
#> 455 Line455 2
#> 456 Line456 2
#> 457 Line457 2
#> 458 Line458 2
#> 459 Line459 2
#> 460 Line460 2
#> 461 Line461 2
#> 462 Line462 2
#> 463 Line463 2
#> 464 Line464 2
#> 465 Line465 2
#> 466 Line466 2
#> 467 Line467 2
#> 468 Line468 2
#> 469 Line469 2
#> 470 Line470 2
#> 471 Line471 2
#> 472 Line472 2
#> 473 Line473 2
#> 474 Line474 2
#> 475 Line475 2
#> 476 Line476 2
#> 477 Line477 2
#> 478 Line478 2
#> 479 Line479 2
#> 480 Line480 2
#> 481 Line481 2
#> 482 Line482 2
#> 483 Line483 2
#> 484 Line484 2
#> 485 Line485 2
#> 486 Line486 2
#> 487 Line487 2
#> 488 Line488 2
#> 489 Line489 2
#> 490 Line490 2
#> 491 Line491 2
#> 492 Line492 2
#> 493 Line493 2
#> 494 Line494 2
#> 495 Line495 2
#> 496 Line496 2
#> 497 Line497 2
#> 498 Line498 2
#> 499 Line499 2
#> 500 Line500 2
#> 501 Line501 2
#> 502 Line502 2
The second is the nxp
trait matrix. The rows of the
trait matrix are aligned with the rows of the individual identifier
data.frame. We can extract these for use in MegaLMM
:
Y = data_matrices$Y
head(Y)[,1:5]
#> Env01 Env02 Env03 Env04 Env05
#> Line001 0.07663660 0.57362277 -0.1057396 0.4053487 -0.09638836
#> Line002 -0.03429877 -0.04004347 -0.2653557 0.1136820 -0.00372635
#> Line003 0.21059771 -0.63959202 0.3995948 0.2926501 0.11464992
#> Line004 -0.75226609 -0.14319441 -1.2009773 -0.4363149 -0.24941693
#> Line005 0.50406848 0.14874755 0.6330452 0.6561490 0.12371692
#> Line006 -0.02619325 0.16820004 0.1799732 -0.2938856 0.02111995
One check we need to do is ensure all our individuals in our data are represented in the genomic relationship matrix:
The goal of genomic prediction is to accurately predict the genetic values of individuals that are not observed in a particular environment. The standard way to estimate this accuracy is to mask a portion of the lines in the input data, use a model to predict these masked values, and then measure the correlation between the predicted values and the original data. In this tutorial we will do only 1 round of a k-fold cross-validation. Generally you would repeat this with other training / testing partition.
Because we are evaluating the accuracy for incomplete multi-environment trial prediction, we will mask different set of individuals in each environment, so each individual maintains input data in at least some individuals.
Because the individuals are stratified between two populations, we will ensure all testing individuals come from the same population. The masking algorithm will be:
Not not worry about understanding this code! The call to
set.seed()
at the beginning makes it repeatable.
set.seed(1)
k_fold = 5 # we will hold out 1/5 = 20% of the observations from each environment
fold_ID_matrix = matrix(NA,nrow = nrow(Y),ncol = ncol(Y),dimnames = dimnames(Y))
for(i in 1:ncol(fold_ID_matrix)) {
observed_lines = sample_data[!is.na(Y[,i]),]
pop = names(sort(table(observed_lines$Population),decreasing=T))[1]
observed_lines = subset(observed_lines,Population == pop)
n_lines = nrow(observed_lines)
observed_lines$fold = sample(rep(1:k_fold,(n_lines/k_fold)+1))[1:n_lines]
fold_ID_matrix[match(observed_lines$Line,rownames(fold_ID_matrix)),i] = observed_lines$fold
}
Now that we have divided the observed data into folds, we can chose to mask fold==1 to create our training data, and extract the corresponding values as our testing data
fold_ID = 1
Y_train = Y_testing = Y
Y_train[fold_ID_matrix == fold_ID] = NA
Y_testing[fold_ID_matrix != fold_ID | is.na(fold_ID_matrix)] = NA
To evaluate whether the multi-trait prediction from
MegaLMM
is useful, we’ll run normal univariate genomic
prediction using the GBLUP model using the rrBLUP
package.
library(rrBLUP)
rrBLUP_predictions = matrix(NA,nrow(Y),ncol(Y),dimnames = dimnames(Y))
for(i in 1:ncol(Y)) {
X = model.matrix(~Population,sample_data) # we will include Population as a covariate if it is variable among the individuals for this environment
if(var(X[!is.na(Y_train[,i]),2]) == 0) X = X[,-2]
rrBLUP_predictions[,i] = mixed.solve(y = Y_train[,i],
X = X,
K = K)$u
}
Here are the correlations between the predictions and the testing data:
diag(cor(Y_testing,rrBLUP_predictions,use='p'))
#> Env01 Env02 Env03 Env04 Env05 Env12
#> 0.278425958 0.187881694 0.625000316 0.389125876 -0.033478375 0.029312407
#> Env14 Env16 Env17 Env15 Env06 Env13
#> -0.109251579 0.339391947 0.334737933 0.373848343 -0.272951670 0.111330746
#> Env18 Env19 Env07 Env08 Env09 Env10
#> 0.426321031 0.002766824 0.309384501 0.349614409 -0.097410915 0.104172216
#> Env11
#> -0.071876574
Now, we’ll move to MegaLMM
and fit a multivariate GBLUP
model to all trials at once.
First, I’ll review the MegaLMM
model, and then describe
the implementation and usage of the R
package.
MegaLMM implements multivariate linear mixed models of the form:
Y = X*B + Z*U + E
where Y
is a n x t
matrix of observations
for n
individuals and t
traits, X
is a design matrix for b
fixed effects (including an
intercept), Z
is a design matrix for the random effects,
and E
is a n x t
matrix of residual errors.
The random effects are U
are independent of the residuals,
but columns of U
matrix can be correlated, and each column
vector marginally follows a multivariate normal distribution with a
known covariance matrix K
.
MvLMMs like this are notoriously difficult to fit. We address this by re-paramterizing the MvLMM as a mixed effect factor model:
Y = F*Lambda + Y_R
Y_R = X*B_R + Z*U_R + E_R
F = X*B_F + Z*U_F + E_F
where F
is a n x k
matrix of latent factor
traits and Lambda
is a k x t
matrix of factor
loadings. This is the model actually fit by MegaLMM.
Basically, we break Y
which is a set of t
correlated traits into two sets of uncorrelated traits: Y_R
and F
. These are sets of t
and K
traits all of which are independently related to the fixed and random
effects. All covariances within and among these sets of traits are
captured by Lambda
. Because of this, we can treat each of
the columns of Y_R
or F
independently and
specific a LMM for each of them. Generally, we use the same
X
, Z
and K
for all these traits.
However in MegaLMM
we allow some additional
flexibility:
X
is split into two
parts: X_1
and X_2
. X_1
are true
fixed effects meaning the corresponding coefficients (B_1
)
are given flat priors. Because of this, we can’t allow F
to
depend on X_1
, so this is only part of the model for
Y_r
. X_2
are regularized effects, so the
corresponding coefficients are given an informative prior (e.g. BayesC).
We allow both Y_R
and F
to depend on
X_2
, and potentially on different subsets of
X_2
: X_2F
and X_2R
, with
corresponding coefficient matrices B_2F
and
B_2R
. We do not make use of these matrices in this
tutorial. The full models thus are:
Y_R = X_1*B_1 + X_2R*B_2R + Z*U_R + E_R
and
F = X_2F*B_2F + Z*U_F + E_F
.Y_R
, because of missing values not all columns of
X_1
may be variable for a particular trait. Therefore we
drop columns of X_1
as needed and assign the coefficients
to 0.MegaLMM
does allow you to specific multiple independent
random effects with different covariance matrices. However the memory
and time complexities increase exponentially with more random effects.
And, we cannot account for correlations among U_i
and
U_j
.Taking a single column of Y_R
, the LMM is:
\[ y_r = X\times b_r + Z\times u_r + e_r \\ u_r \sim N(0,\sigma^2*h^2*K) \\ e_r \sim N(0,\sigma^2*(1-h^2)*I) \]
The model for each column of F
is similar. This differs
from most Bayesian LMMs in the parameterization of the variance
components, but has some conceptual and algorithmic advantages. For
priors, we use an inverse gamma prior for \(\sigma^2\) and a discrete prior on \(h^2\). Specification of the priors is
described below.
The unique aspects of MegaLMM relative to other factor models are:
Y
after accounting for the factors are
not assumed to be iid, but are modeled with independent (across traits)
LMMs accounting for both fixed and random effects.We use R’s formula
syntax to construct the design
matrices X
and Z
. In default usage, we
specific a single formula and assume it applies to all columns of both
Y_R
and F
, except the fixed effects do not
apply to F
.
The random effect syntax in a formula is (a|X)
. This
specifies a variance for each level of a
(e.g.
environment) for the location effects for each level of X
(e.g. genotype, i.e. variance among genotypes in each
environment). In lme4
syntax, there would additionally be
covariances between the levels of a
within each level of
X
. However we cannot model these covariances in
MegaLMM
, so this syntax makes independent variances for
each level of a
. Note, however, that each level of
a
introduces a new variance into the model, which
exponentially increases the memory requirements! It is much better, if
possible, to introduce each level of a
as a separate
trait!
Random effects have two parts: location effects
which are the values for each level (e.g. breeding values for
each individual) and variances which are the population
variances of the location effects. We model the location effects as
following a multivariate normal distribution with covariance equal to a
known covariance matrix (K) times a variance
proportion (\(h^2\)) times a
phenotypic variance (\(\sigma^2\)).
This differs slightly from typical parameterizations of random effects,
which uses a separate variance for each random effect. In
MegaLMM
we instead model the proportion that each random
effect contributes to the total, so all \(h^2_i\) values sum to 1, and use a discrete
prior over the interval [0,1] for this parameter. This gives you a lot
of flexibility for specifying prior distributions.
In most factor models the number of factors K
is a
critical parameter, and models with different numbers of parameters
(either larger or smaller than optimal) may give very different answers.
This is generally not the case in MegaLMM
. In
MegaLMM
we use a prior to order and regularize the
importance of the factors, enforcing that high-order factors explain
less and less of the overall variation. Therefore the highest-order
factors are generally extremely unimportant, and adding a few more or
fewer of these unimportant factors won’t change the influence of the
first factors. It is important to set K
large enough to
capture most of the covariation in Y
, but once it’s large
enough, additional values will not likely affect the model much.
A related note, though, is that the precise ordering of the factors
is not well learned by the MCMC algorithm, and so inferences that rely
on this should be treated with extreme caution. The rate of decay of
factor importance is highly sensitive to the prior, and factor ordering
does not mix well. Routines are described below to help the convergence
of factor ordering to a useful value, but that is all we can do. This
also means that the precise values of individual factor loadings may
drift during the MCMC as factor orderings change slowly. This would
greatly impact the inference on factor identities, but is not very
important if the goal is prediction of U
or
Y
.
In a Bayesian model, we can treat missing data as additional parameters that need to be learned, so imputation of missing data happens naturally. However, if we construct the model correctly, some missing data points are not needed for the inference of any other parameters, and so can be simply predicted from the posterior values of other parameters. The more missing values we can treat this way the better, because conditioning on imputed values in MCMC greatly reduces the mixing rate of the chain.
In MegaLMM
, if we can identify groups of traits that
share missing values across a group of individuals (rows), we can
declare that this block of values to be only predicted, not imputed.
There is a tradeoff here in that the more groups of traits are
specified, the greater the memory overhead of MegaLMM
. But
the improvement in MCMC mixing can be great.
MegaLMM
uses a Gibbs sampler to draw samples from
posterior of all unknown parameters. There are a lot of parameters in
the MegaLMM
model, and not all of them may be of interest
to a user. You can choose which specific parameters should be tracked as
described below. Additionally, you may be interested in a function of
several parameters, and there is a function to calculate these values on
each iteration as well. Finally, the sets of posterior samples can
themselves be very large. If you’re tracking large matrices of predicted
values for thousands of traits these posterior samples can take of Gbs
of memory. Therefore MegaLMM
has a way to store the
posterior samples as a database on the disk, only holding small chunks
of a chain in memory at a time.
The first function for MegaLMM
sets several parameters
of the model. Only a few are noted here. See the help page for more
control parameters. The output is a list that will be passed to the main
model construction function below.
run_parameters = MegaLMM_control(
h2_divisions = 20,
# Each variance component is allowed to explain between 0% and 100% of the
# total variation. How many segments should the range [0,100) be divided
# into for each random effect?
burn = 0,
# number of burn in samples before saving posterior samples. I set this to
# zero and instead run the chain in small chunks, doing the burning manually, a
# s described below.
thin = 2,
# during sampling, we'll save every 2nd sample to the posterior database.
K = 15 # number of factors. With 19 traits, this is likely way higher than needed.
)
The function setup_model_MegaLMM
parses the model
formulas, links the GRM to the random effects, and creates an object to
store all components of the model.
MegaLMM_state = setup_model_MegaLMM(
Y = Y_train,
# The n x p trait matrix
formula = ~ Population + (1|Line),
# This is syntax like lme4 for mixed effect models.
# We specify a fixed effect of population and a random effect for genotype (Line)
data = sample_data,
# the data.frame with information for constructing the model matrices
relmat = list(Line = K),
# A list of covariance matrices to link to the random effects in formula.
# each grouping variable in formula can be linked to a covariance matrix.
# If so, every level of the grouping variable must be in the rownames of K.
# additional rows of K not present in data will still be predicted
# (and therefore will use memory and computational time!)
run_parameters=run_parameters,
# This list of control parameters created above
run_ID = sprintf('MegaLMM_fold_%02d',fold_ID)
# A run identifier. The function will create a folder with this name
# and store lots of useful data inside it
)
#> Warning: as(<matrix>, "lgTMatrix") is deprecated since Matrix 1.5-0; do
#> as(as(as(., "lMatrix"), "generalMatrix"), "TsparseMatrix") instead
The output is the variable MegaLMM_state
which is an
object of class MegaLMM_state
including the following
slots:
current_state
: a list with elements holding the current
values for all model parameters. Each parameter is stored as a 2d
matrix. Variable names correspond as closely as possible to those
described in the manuscript: Runcie et al 2020.Posterior
: a list with elements 3d or 2d arrays holding
posterior samples (or posterior means) of specified model parameters. By
default, samples of all parameters are stored. However these matrices
can be large if data is large, so parameters can be dropped from this
list by removing their names from the lists
MegaLMM_state$Posterior$posteriorSample_params
and
MegaLMM_state$Posterior$posteriorMean_params
.run_ID
: The current state of the chain plus Posterior
samples and any diagnostic plots are automatically saved in a folder
with this name during the run.Before we can run the model, we have to do a few more steps
We need to set priors for the variance components (\(\sigma^2\) and \(h^2\) for Y_R
and
F
, and for the parameters of the factor loadings
Lambda
.
For Lambda
, we have several types of priors as described
in the MegaLMM papers. In this tutorial we will use the horseshoe prior
from the Genome Biology paper:
Lambda_prior = list(
sampler = sample_Lambda_prec_horseshoe,
# function that implements the horseshoe-based Lambda prior
# described in Runcie et al 2020.
#See code to see requirements for this function.
# other options are:
# ?sample_Lambda_prec_ARD,
# ?sample_Lambda_prec_BayesC
prop_0 = 0.1,
# prior guess at the number of non-zero loadings in the first and most important factor
delta = list(shape = 3, scale = 1),
# parameters of the gamma distribution giving the expected change
# in proportion of non-zero loadings in each consecutive factor
delta_iterations_factor = 100
# parameter that affects mixing of the MCMC sampler. This value is generally fine.
)
For the remaining priors we use MegaLMM_priors
priors = MegaLMM_priors(
tot_Y_var = list(V = 0.5, nu = 5),
# Prior variance of trait residuals after accounting for fixed effects and factors
# See MCMCglmm for meaning of V and nu
tot_F_var = list(V = 18/20, nu = 20),
# Prior variance of factor traits. This is included to improve MCMC mixing,
# but can be turned off by setting nu very large
h2_priors_resids_fun = function(h2s,n) 1,
# Function that returns the prior density for any value of the h2s vector
# (ie the vector of random effect proportional variances across all random effects.
# 1 means constant prior.
# n is the number of h2 divisions above (here=20)
# 1-n*sum(h2s)/n linearly interpolates between 1 and 0,
# giving more weight to lower values
h2_priors_factors_fun = function(h2s,n) 1,
# See above.
# sum(h2s) linearly interpolates between 0 and 1,
# giving more weight to higher values
# Another choice is one that gives 50% weight to h2==0: ifelse(h2s == 0,n,n/(n-1))
Lambda_prior = Lambda_prior
# from above
)
We then assign them to the MegaLMM_state
object:
MegaLMM_state = set_priors_MegaLMM(MegaLMM_state,priors)
As described above, if missing values can be grouped into line:environment sets that are 100% missing, these sets can be dropped from the model and only predicted from the posterior of other parameters. The following code attempts to find an optimal partitioning of values to maximize the number of dropped NA values in the smallest number of groups
maps = make_Missing_data_map(MegaLMM_state,max_NA_groups = ncol(Y)+1,verbose=F)
maps$map_results
#> map N_groups max_group_size total_kept_NAs
#> 1 1 1 502 6797
#> 2 2 3 327 3115
#> 3 3 4 312 2560
#> 4 4 5 296 2018
#> 5 5 6 296 1437
#> 6 6 7 296 1143
#> 7 7 8 296 869
#> 8 8 9 296 677
#> 9 9 10 296 611
#> 10 10 11 296 561
#> 11 11 12 296 525
#> 12 12 13 287 382
#> 13 13 14 287 348
#> 14 14 15 287 281
#> 15 15 16 287 215
#> 16 16 17 287 155
#> 17 17 18 287 101
#> 18 18 19 287 48
#> 19 19 20 287 0
Using the 15th map above might be a good option:
MegaLMM_state = set_Missing_data_map(MegaLMM_state,maps$Missing_data_map_list[[15]])
Next, we create random starting values for all parameters:
MegaLMM_state = initialize_variables_MegaLMM(MegaLMM_state)
#> [1] "initializing Lambda_prec horseshoe"
#> [1] "initializing B_prec horseshoe"
Now, we need to calculate some matrices that MegaLMM
will use repeatedly during the Gibbs sampler. These calculations can
take quite a bit of time for large models, particular when there are a
lot of individuals, more than 1 random effect, and many groups of traits
from the missing data map.
The stored matrices can also use a lot of RAM. It is a good idea to first get an estimate of how much RAM the model will need, before jumping in to the calculations. We can estimate the memory usage using the following function:
estimate_memory_initialization_MegaLMM(MegaLMM_state)
#> Loading required package: pryr
#> [1] "Random effects: Line"
#> [1] "16 groups of traits and 20 h2 grid cells"
#> [1] "Estimated initialized size: 0.01 B Gb"
Because this dataset is small and there is only 1 random effect, the memory requirements are low.
Now we can run these preliminary calculations:
= initialize_MegaLMM(MegaLMM_state,verbose = T)
MegaLMM_state #> [1] "Pre-calculating random effect inverse matrices for 16 groups of traits and 20 sets of random effect weights"
#>
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|======================================================================| 100%
As described above, the MegaLMM
has many parameters, and
we could store posterior samples of all parameters. But there’s not much
use in storing large parameter arrays if we’re not actually interested
in the values of those parameters.
Also, sometimes our interest is not really in any of the
parameters, but instead in some function we can calculate from a set of
parameters. For example, we’re interested in U
, the
additive genetic values, or Y
the genetic values, but those
are not parameters of our MegaLMM
model. We could store all
parameters and then calculated these predicted values at the end, but
that would be a waste of space.
Instead, we can control which specific parameters are stored by the program.
By default, MegaLMM
stores individual posterior samples
of some parameters, and posterior means of others. You can see the list
of defaults here:
These parameters have individual samples stores:
MegaLMM_state$Posterior$posteriorSample_params
#> [1] "Lambda" "U_F" "F" "delta" "tot_F_prec"
#> [6] "F_h2" "tot_Eta_prec" "resid_h2" "B1" "B2_F"
#> [11] "B2_R" "U_R" "cis_effects" "Lambda_m_eff" "Eta"
These parameters have only posterior means stores:
MegaLMM_state$Posterior$posteriorMean_params
#> [1] "Eta_mean"
Eta_mean
is the internal parameter for the predicted
phenotypic value Y
.
In our case, many of these values are not useful, so I’ll re-specify these lists:
MegaLMM_state$Posterior$posteriorSample_params = c('Lambda','F_h2','resid_h2','tot_Eta_prec')
MegaLMM_state$Posterior$posteriorMean_params = 'Eta_mean'
But we also want to calculate the predicted genetic values. From the
MegaLMM
model, the predicted genetic values are the
combination of the genetic component of Y_R
(U_R
), and the genetic component of F
(U_F
) rotated by the factor loadings:
U = U_F * Lambda + U_R
We can ask MegaLMM
to calculate this value for us and
save the posterior samples. I’ve also included code to calculate the
genetic (G) and residual (R)
covariances among environments, and the additive heritability of each
environment because they might be interesting.
MegaLMM_state$Posterior$posteriorFunctions = list(
U = 'U_F %*% Lambda + U_R',
G = 't(Lambda) %*% diag(F_h2[1,]) %*% Lambda + diag(resid_h2[1,]/tot_Eta_prec[1,])',
R = 't(Lambda) %*% diag(1-F_h2[1,]) %*% Lambda + diag((1-resid_h2[1,])/tot_Eta_prec[1,])',
h2 = '(colSums(F_h2[1,]*Lambda^2)+resid_h2[1,]/tot_Eta_prec[1,])/(colSums(Lambda^2)+1/tot_Eta_prec[1,])'
)
Now that we’ve decided which values to save, we initialize the posterior database:
MegaLMM_state = clear_Posterior(MegaLMM_state)
As a final check, we should also assess how much memory the posterior samples will require.
We can estimate with the estimate_memory_posterior()
function, giving it a number of iterations we plan to run in a
single chunk (see below).
estimate_memory_posterior(MegaLMM_state,100)
#> [1] "Estimated posterior size for n_samples: 0.0040262 Gb"
Since we’re not saving any large matrices, the memory requirements will be low.
We’re finally ready to fit the model! Fitting the means running the
Gibbs sampler. This is accomplished with the
sample_MegaLMM()
function, which takes a
MegaLMM_state
object and the number of iterations to run as
arguments. We do run the chain in two stages: burnin
and
sampling
.
The burnin period is a period we wait until the chain comes to the stationary distribution. We can either wait a defined number of steps, or we can monitor convergence diagnostics, such as trace plots.
I prefer to use trace plots of the parameters that I am interested in. Yes it is not completely safe to declare stationarity until all parameters are stationary, but especially when we are only interested in the posterior mean of something like breeding values or genetic covariance, this seems to work well, and correlations across replicate runs is generally high.
While Gibbs samplers will eventually reach the stationary distribution, it is OK during the burnin phase to use some deliberate artificial jumps to push the chain into a location that likely has higher posterior mass. The one place that I’ve found this useful is in the order of the factors. Factor order is very sticky in the chain - it can take hundreds of iterations for any factor to switch. This means that factor order will never achieve a high effective sample size from this Gibbs sampler. However, I find that if I periodically check the observed importance of each factor during the burnin phase and then re-sort the factors, I achieve convergence of other parameters much more readily.
Therefore, my recommended manual burnin goes through a few rounds of:
re-order the factors
draw a set of new samples from the chain
look at some trace plots.
If they look good, clear the samples and start collecting real posterior samples
If not, repeat again.
#> Warning in cor(F): the standard deviation is zero
#> Warning in cor(F): the standard deviation is zero
#> Warning in cor(F): the standard deviation is zero
#> Warning in cor(F): the standard deviation is zero
The function traceplot_array()
saves a pdf booklet in
the MegaLMM_state$run_ID
directory. To see them, navigate
to this directory in finder and look for Lambda.pdf
and
U.pdf
If we think the model is reasonable converged to stationary, we can now collect posterior samples.
Since we’re not going to collect a lot of samples, and we’re not
storing large matrices, we could do this in one run. But I’m still going
to do it in a few chunks to demonstrate the
save_posterior_chunk()
function which saves the posterior
samples to the database on disk, clears the posterior samples in memory,
and continues sampling. We then load the samples we want back at the
end.
= 250
n_iter for(i in 1:4) {
print(sprintf('Sampling run %d',i))
= sample_MegaLMM(MegaLMM_state,n_iter)
MegaLMM_state = save_posterior_chunk(MegaLMM_state)
MegaLMM_state print(MegaLMM_state)
}#> [1] "Sampling run 1"
#>
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Time difference of 15.37253 secs
#>
#> Current iteration: 750, Posterior_samples: 125
#> Total time: 46.20289 secs
#>
#> [1] "Sampling run 2"
#>
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Time difference of 15.616 secs
#>
#> Current iteration: 1000, Posterior_samples: 250
#> Total time: 1.030315 mins
#>
#> [1] "Sampling run 3"
#>
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Time difference of 15.07514 secs
#>
#> Current iteration: 1250, Posterior_samples: 375
#> Total time: 1.281567 mins
#>
#> [1] "Sampling run 4"
#>
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Time difference of 15.14122 secs
#>
#> Current iteration: 1500, Posterior_samples: 500
#> Total time: 1.533921 mins
Since our thinning rate is 2, and we run a total of 1000 sampling iterations, we end up with 500 posterior samples.
While we’ve collected 500 posterior samples, if we actually look at
the Posterior slot of MegaLMM_state
, we’ll find the
posterior is empty:
This is because the save_posterior_chunk
function saves
the samples to the disk. The posterior database is in the folder:
MegaLMM_fold_01/Posterior/*
. To reload samples of a
particular parameter, use:
Lambda_samples = load_posterior_param(MegaLMM_state,'Lambda')
U_samples = load_posterior_param(MegaLMM_state,'U')
dim(U_samples)
#> [1] 500 502 19
We can get posterior means with the get_posterior_mean()
function:
U_hat = get_posterior_mean(U_samples)
U_hat
is our predicted additive genetic value for every
line in every trial.
We can also access the predicted total genetic value
Eta_mean
, which we stored as a posterior mean instead of as
individual samples during the chain:
Eta_mean = load_posterior_param(MegaLMM_state,'Eta_mean')
Let’s compare the accuracy of MegaLMM's
predictions
(U_hat
or Eta_mean
) to those of
rrBLUP
:
rrBLUP_accuracy = diag(cor(Y_testing,rrBLUP_predictions,use='p'))
MegaLMM_Uhat_accuracy = diag(cor(Y_testing,U_hat,use='p'))
MegaLMM_Eta_mean_accuracy = diag(cor(Y_testing,Eta_mean,use='p'))
plot(rrBLUP_accuracy,MegaLMM_Uhat_accuracy);abline(0,1)
We see that in most trials we gained considerable accuracy through the multi-trait modeling.
We also see that because MegaLMM
can also look at
non-additive-genetic covariances among lines (i.e. residual
correlations that are not explained by K
but still must be
genetic), we generally gained a bit of additional accuracy.
You can get a summary of the MCMC chain with the print
and summary
methods:
print(MegaLMM_state)
#>
#> Current iteration: 1500, Posterior_samples: 500
#> Total time: 1.533921 mins
summary(MegaLMM_state)
#> Model dimensions: factors = 15, fixed = 2, regression_R = 0, regression_F = 0, random = 502
#> Current iteration: 1500, Posterior_samples: 500
#> Total time: 1.533921 mins
As I mentioned above, posterior samples can be saved to the disk like this:
MegaLMM_state = save_posterior_chunk(MegaLMM_state)
When you do this, you no longer have direct access to the samples
you’ve collected inside the MegaLMM_state
object. Instead,
they are stored in the folder: [run_ID]/Posterior/
where
[run_ID]
is the name you gave to this model run above.
dim(MegaLMM_state$Posterior$Lambda)
#> [1] 0 15 19
To load all posterior samples of a particular parameter back into
MegaLMM_state
so that you can work with them, you can
either call:
U = load_posterior_param(MegaLMM_state,'U')
dim(U)
#> [1] 500 502 19
or you can reload all samples of all stored parameers with:
MegaLMM_state$Posterior = reload_Posterior(MegaLMM_state)
dim(MegaLMM_state$Posterior$Lambda)
#> [1] 500 15 19
dim(MegaLMM_state$Posterior$F_h2)
#> [1] 500 1 15
As you can see above, we have collected 500 posterior samples. The
samples for each parameter are stored as a 3-dimensional array. All
parameters of the MegaLMM
model are stored as 2-dimensional
matrices. So MegaLMM_state$Posterior\$Lambda[1,,]
will
return the 1st posterior sample of the parameter Lambda, which has
dimension \(15 \times 19\) in this
model because K=15
and t=19
. The parameter
F_h2
stores the variance component proportions for the
random effect Line
for the 15 latent factors. There is only
1 random effect, so the dimension of this matrix is \(1 \times 15\).
To assess convergence of a parameter, it’s helpful to look at traceplots. You make a traceplot of a single parameter by extracting its chain and plotting it:
plot(U[,1,2],type='l')
But it’d take a lot to make this plot for every element of every
matrix. As a shortcut, the function traceplot_array
can
make lots of traceplots for a matrix parameter:
traceplot_array(MegaLMM_state$Posterior$Lambda,facet_dim = 2,name = 'Lambda')
This will create a pdf booklet stored in the [run_ID]
folder (note in the next update, this will be changed to directly
use the file name provided). This will take the rows
(facet_dim=2
) or columns (facet_dim=3
) of the
provided parameter array and make a faceted plot, where within each
facet a sampling of the values in that row/column will be selected
(those with the largest posterior means) and traceplots will be made.
Generally it is the largest values that are the most interesting, and
will be most diagnostic of sampling issues.
Often we want to calculate summaries of the posterior samples. Two functions are provided:
U_hat = get_posterior_mean(U)
dim(U_hat)
#> [1] 502 19
U_HPD = get_posterior_HPDinterval(U,prob = 0.95)
dim(U_HPD)
#> [1] 2 502 19
The latter function will calculate lower and upper 0.95 Highest
Posterior Density bounds for each element of the matrix
U
.
Finally, we can calculate functions of the parameters, as long as all are stored in the Posterior database. For example, we can calculate the phenotypic covariance matrix at each posterior sample like this:
P_samples = get_posterior_FUN(MegaLMM_state,t(Lambda) %*% Lambda + diag(1/tot_Eta_prec[1,]))
dim(P_samples)
#> [1] 500 19 19
We’ve focused on predicting location effects of the random effects of line for each trait (yield in each environment). But we can also extract the estimates and posterior distributions on the key variance-covariance parameters \(\mathbf{G}\) and \(\mathbf{R}\). The model for the genetic covariance in MegaLMM is: \(\mathbf{G} = \mathbf{\Lambda^T \Sigma_{h^2_F} \Lambda} + \mathbf{\Psi \otimes \Sigma_{h^2_R}}\)
We can calculate this using the same syntax:
G_samples = get_posterior_FUN(MegaLMM_state,
t(Lambda) %*% diag(F_h2[1,]) %*% Lambda + diag(resid_h2[,1]/tot_Eta_prec[1,])
)
dim(G_samples)
#> [1] 500 19 19
But, if you look back, we actually defined this as one of the
posterior_functions
we specifed in the beginning, so it’s
actually already calculated for us, and we can just load the samples of
this matrix directly:
G_samples = load_posterior_param(MegaLMM_state,'G')
R_samples = load_posterior_param(MegaLMM_state,'R')
dim(G_samples)
#> [1] 500 19 19
dim(R_samples)
#> [1] 500 19 19
If you look at your posterior samples and decide that the model hasn’t really converged, you can treat the current chain as an extended burnin and re-start the collection of posterior samples. I won’t run the code here so we don’t lose our current samples!
#MegaLMM_state2 = clear_Posterior(MegaLMM_state)
#print(MegaLMM_state2)
You’ll see the Posterior_samples
value has been set to
0.
Our current model object is not that big, and so you can save it directly:
saveRDS(MegaLMM_state,file = 'MegaLMM_state_run_01.rds')
And then come back and reload it and go:
MegaLMM_state = readRDS('MegaLMM_state_run_01.rds')
print(MegaLMM_state)
#>
#> Current iteration: 1500, Posterior_samples: 500
#> Total time: 1.533921 mins
However, to re-start the sampling, all you actually need is the
initialized MegaLMM_state
object and a stored
current_state
slot. This slot is a list with the current
state of all parameters as well as the random number generator. This
gets automatically saved in the [run_ID]
directory, so you
can re-run the setup_model_MegaLMM()
function, add priors,
initialize, etc, and then reload the current_state
and
resume the chain where you left off:
MegaLMM_state$current_state = readRDS('MegaLMM_fold_01/current_state.rds')
You may have noticed in some diagnostics that parameters of
Lambda
do seem to be drifting a lot, suggesting that the
chain has not converged. This suggests you should probably run this
model much longer. That is probably true. However, in my experience,
posterior distributions of location effects like U
do not
change much with much longer chains - what’s happening is that the
magnitude of values of Lambda
and the magnitude of
corresponding columns of F
are not identified in the
likelihood, because the true term in the model is
F * Lambda
. So there’s a lot of drift (poor mixing) in the
magnitudes of those parameters, ever if their product is mixing well.
Also, the order of columns of F (and rows of Lambda) is not identified
in the likelihood. The prior does provide a fairly clear ordering, but
it’s still not unusual to have factors switch order. When this happens,
Lambda[1,3]
may take on the previous identity of
Lambda[2,3]
and so traceplots of Lambda[1,3]
will not look good (or posterior means of this parameter. Therefore, I
advise caution interpreting Lambda.